DoD

Automatic Test Systems

Architecture Guide
[image: image13.png]
[image: image1.png]1999
Table of Contents
5Acronyms

1.0  Purpose
7
2.0  Scope
7
3.0  Relationships
7
3.1  DoD ATS Master Plan
8
3.2  DoD ATS Selection Process Guide
8
3.3  DoD ATS Handbook
8
3.4 The DoD Joint Technical Architecture
9
4.0  Concepts
9
4.1  Automatic Test Systems
9
4.2  Open Systems
10
4.3  Application of Standards
10
4.4  Key Elements
10
4.5  The ATS Architecture
11
5.0  Description of the ATS Architecture
12
5.1  Models
12
5.1.1  Digital Test Format (DTF)
13
5.1.2  Adapter Functional & Parametric Information (AFP)
14
5.1.3  Built In Test Data (BTD)
14
5.1.4  Diagnostic Data (DIAD)
14
5.1.5  Instrument Functional & Parametric Information (IFP)
15
5.1.6  Multimedia Formats (MMF)
15
5.1.7  Maintenance & Test Data and Services (MTD)
15
5.1.8  Product Design Data (PDD)
15
5.1.9  Switch Functional & Parametric Information (SFP)
16
5.1.10  UUT Test Requirements (UTR)
16
5.2  Components
16
5.2.1  System Framework System Framework (FRM)
16
5.2.2  Instrument Communication Manager (ICM)
16
5.2.3  Instrument Driver (DRV)
17
5.2.4  Switching Matrix (SWM)
17
5.2.5  Computer to External Environments (CXE)
17
5.3  Interfaces
18
5.3.1  Data Networking (NET)
18
5.3.2  Diagnostic Services (DIAS)
19
5.3.3  Resource Adapter Interface (RAI)
19
5.3.4  Receiver/Fixture Interface (RFX)
20
5.3.5  Resource Management Services (RMS)
20
5.3.6  Run Time Services (RTS)
20
5.4  Rules
20
5.4.1  Test Program to Operating System
20
5.5
ATS Architecture Reference Model
21
6.0  Guidelines for the Implementing the ATS Architecture
21
7.0  Mandated Specifications, Standards, and Rules
22
7.1  Digital Test Format (DTF)
22
7.1.1  Dependencies and Relationships
22
7.2  System Framework (FRM)
22
7.2.1  Dependencies and Relationships
23
7.3  Instrument Driver (DRV)
23
7.3.2  Dependencies and Relationships
23
7.4  Instrument Communication Manager (ICM)
24
7.4.1  Dependencies and Relationships
24
7.5  Computer to External Environments (CXE)
24
7.5.1  Dependencies and Relationships
24
7.6  Data Networking (NET)
25
7.6.1  Dependencies and Relationships
25
7.7  Architecture Rule
25
8.0  Emerging and Unspecified Standards
25
8.1  Diagnostic Data (DIAD)
26
8.1.1  Dependencies and Relationships
26
8.2  Diagnostic Services (DIAS)
26
8.2.1  Dependencies and Relationships
26
8.3  Built In Test Data (BTD)
26
8.4  Functional & Parametric Information (AFP)
27
8.5  Maintenance Test Data and Services (MTD)
27
8.6  Multimedia Formats (MMF)
27
8.7  Product Design Data (PDD)
27
8.8  UUT Test Requirements (UTR)
27
8.9  Switching Matrix (SWM)
27
8.10  Resource Adapter Interface (RAI)
28
8.11  Receiver/Fixture Interface (RFX)
28
8.12  Resource Management Services (RMS)
28
8.13  Run Time Services (RTS)
28
Appendix A - Service Points of Contact
29
Appendix B –  Automatic Test Equipment
31
Hardware
31
Host Computer
31
Instrumentation Buses
32
Instrumentation
33
Receiver
35
Switching Unit
36
Software
36
Operating System
36
Run Time System
36
Diagnostics
37
Resource Management
37
Development Environment
38
Test Programs
38
Appendix C  - Document Sources
39
Appendix D - Reference Documents
40
Appendix E - Key Element Dependencies
41
Appendix F - Key Element Benefits
43


Acronyms

AFP




Adapter Functional & Parametric Information
AMB




ATS Management Board

ARI
Automatic Test System Research & Development Integrated Product Team

ASN(RDA)
Assistant Secretary of the Navy (Research, Development and Acquisition)

ATE




Automatic Test Equipment

ATLAS



Abbreviated Test Language for All Systems

ATS




Automatic Test System(s)

BTD
Built-In Test Data

COTS
Commercial Off-the-Shelf

CXE




Computer to External Environment 

DIAD
Diagnostic Data and Knowledge Representations

DIAS




Diagnostic Reasoner Services

DATPG 



Digital Automatic Test Program Generator 

DRV
Instrument Driver

DTF
Digital Test Data Format

EA




Executive Agent

EAO




Executive Agent Office

FRM
System Framework

GPIB




General Purpose Interface Bus (IEEE 488)

ICM




Instrument Communication Manager

IFP




Instrument Functional & Parametric Information

I/O




Input/Output 

IPT




Integrated Product Team 

ITA




Interface Test Adapter

JTA




Joint Technical Architecture

NET
Network Protocol

OSD




Office of Secretary of Defense

PDD




Product Design Data

RFX
Receiver/Fixture Interface

RMS
Resource Management Services

RTS




Run Time Services

SFP




Switch Functional & Parametric Information

SWM




Switch Matrix

T&E




Test and Evaluation

TeRM
Test Requirements Model

TFF
Test Foundation Framework

TPS
Test Program Set

UTR




UUT Test Requirements

UUT




Unit Under Test 

VISA
Virtual Instrument Software Architecture

VPP
VXIplug&play Consortium

VXI




VMEbus Extensions for Instrumentation (IEEE 1155)

1.0  Purpose

This Guide presents the critical elements of the DoD Automatic Test Systems (ATS) technical architecture and provides guidance in the application of identified commercial standards to both new acquisitions and modernized Automatic Test Equipment (ATE).  It presents details of the approved DoD ATS Architecture for use by DoD Program Managers in designing and developing new-design ATS and modifying existing ATS. The contents of this document have been harvested from the work of various Integrated Product Teams (IPTs) chartered by the DoD Executive Agent (EA) for ATS, predominantly the ATS Research & Development IPT (ARI).

The DoD ATS Architecture is described in the ATS Subdomain Annex to the Combat Systems Domain in the DoD Joint Technical Architecture.  This Guide coalesces the ATS-related architecture requirements contained in both the ATS Annex and the body of the JTA, along with other required architecture elements such as ARI performance standards or rules, into one relatively easy-to-read document.  JTA brings many benefits including commonality, standardization (both technically and logistically) and interoperability.  It has been shown that incorporation of commercial standards such as those specified in the JTA will reduce the cost of supporting systems.

DoD Program Managers may obtain assistance and advice on the guidance provided herein from their Service’s ATS Management Board (AMB) member.  See Appendix A for a list of Service points of contact.

2.0  Scope

This guide applies to all ATS acquired within DoD for use at all levels of maintenance and for use at the factory (in either a production role or a support role) when provided as Government Furnished Equipment (GFE).  It is applicable to both COTS and non-COTS testing solutions.

3.0  Relationships

The Executive Agent Office (EAO) has published a number of ATS implementation documents for use by PMs throughout DoD.  These documents are available from the DoD ATS EA web site (http://dodats.osd.mil).

3.1  DoD ATS Master Plan

This document provides a consolidated Master Plan for the implementation of the DoD ATS acquisition policy and investment strategy.  It examines the historical evolution of DoD ATS acquisition management policy, describes the Service Components' ATS management organizations, identifies the major participants in the DoD ATS management structure, identifies ongoing DoD ATS Research and Development (R&D) planning efforts, and defines the evolving DoD ATS modernization strategy.  


The ATS Master Plan highlights the management processes involved in implementing the DoD ATS procurement policy stated in DoD Regulation 5000.2-R (with Change 3 dated 23 Mar 98) which directs Service Components to satisfy ATE hardware and software needs by using designated ATS families and commercial item testers that meet defined ATS capabilities.  The ATS Master Plan presents established criteria for designating future DoD ATS families and for adding testers to current designated families.  It discusses the process for using ATS that do not comply with DoD ATS policy and the certification process for the use of commercial components.  It references the tools required for selecting and implementing ATS solutions to satisfy weapon system requirements using the ATS Selection Analysis Guide.


The ATS Master Plan is published pursuant to the proposed agreement among the Component Acquisition Executives as documented in a Joint Memorandum of Agreement.

3.2  DoD ATS Selection Process Guide

This Guide provides the procedures and tools needed by the DoD Program Manager to implement the requirements of DoD 5000.2-R with regard to the selection of Automatic Test Systems.  It includes processes and models for determining the optimal testing solution.  It presents the processes and forms for preparing requests for deviation to the DoD ATS acquisition policy when the selection process yields a non-Family ATS solution and the validation process when a commercial tester is selected.

3.3  DoD ATS Handbook

This Handbook provides, in a simplified, non-technical format, all the information needed to make educated decisions concerning off-system automatic testing of electronic components in the PM’s weapon system.  It presents definitions and discusses various aspects of ATS acquisition, including authority of the PM, acquisition strategy, contracting, test and evaluation, controlling costs, and lessons learned.

3.4 The DoD Joint Technical Architecture

DoD 5000.2-R paragraph 4.3.4 requires that "An open systems approach shall be followed for all system elements (mechanical, electrical, software, etc.) in developing systems.  This approach is a business and engineering strategy to choose specifications and standards adopted by industry standards bodies or de facto standards (set by the market place) for selected system interfaces (functional and physical), products, practices and tools.  Selected specifications shall be based on performance, cost, industry acceptance, long term availability and supportability, and upgrade potential."

The DoD Joint Technical Architecture implements this policy requirement for an open systems approach, and documents the architecture required to be used on all kinds of systems throughout DoD, including Automatic Test Systems.  

The OSD implementation letter for the Joint Technical Architecture (30 Nov 1998) states that “implementation of JTA, that is the use of applicable JTA mandated standards, is required for all emerging, or changes to an existing capability that produces, uses, or exchanges information in any form electronically; crosses a functional or DoD Component boundary; and gives the warfighter of DoD decision maker an operational capability.”  The JTA grew out of lessons learned during Desert Storm which evolved into Joint Vision 2010, DoD’s framework for shaping Service programs and capabilities to enable the Services to fight as a joint team.

4.0  Concepts

4.1  Automatic Test Systems


An Automatic Test System includes Automatic Test Equipment (ATE) hardware and its operating software, Test Program Sets (TPSs), which include the hardware, software and documentation required to interface with and test individual weapon system component items, and associated TPS software development tools.  The term "ATS" also includes on-system automatic diagnostics and testing.

Automatic Test Systems are used to identify failed components, adjust components to meet specifications, and assure that an item is ready for issue.

ATE refers to the test hardware and its own operating system software.  Appendix B describes the subsystems and components in ATE.

4.2  Open Systems

An Open System Architecture for ATS is the application of open system principles to an architecture tailored to the requirements of automatic testing.  Open Systems focus on using accepted industry standards to specify the performance and interface requirements of architectural elements.  An Open System approach has several steps common with traditional system engineering approaches.  The major difference being that the Open System approach uses standards to define the specifications for architecture elements.  A standard is defined as a publicly available document defining specifications for interfaces, services, protocols, or data formats, established by consensus.

4.3  Application of Standards

Not all standards apply to all situations, and any group of standards must work together to be useful.  An essential point in the application of open system principles is to select and specify standards that are appropriate for a particular environment and set of needs.  As long as architecture elements adhere to standards, they will meet the open systems objectives.  Standards must have economic advantages to be successful and must be available to users in a format that supports real-world applications.

4.4  Key Elements

In defining an open system architecture for ATS, many elements (interfaces) were identified.  However, only certain of these elements contribute to the cost of the test system.  Others, the key entry element (keyboard) for example, are part of the architecture but are not deemed critical in that their cost or significance is trivial when compared to the whole test system.  The focus of the DoD ATS architecture is on the critical elements.

The vernacular of critical (key) elements was introduced in DoD 5000.2-R.  

“DoD automatic test system (ATS) families or COTS components that meet defined ATS capabilities shall be used to meet all acquisition needs for automatic test equipment hardware and software.  ATS capabilities shall be defined through critical hardware and software elements.  The introduction of unique types of ATS into the DoD field, depot, and manufacturing operations shall be minimized.”

The ATS Architecture is built upon the definition of critical hardware and software elements.  These key elements are comprised of two parts:

· The functional requirements of the key element.

· A standard whose definition satisfies the functional requirements of the key element.  In several cases, there can exist more than one standard for each key element.

4.5  The ATS Architecture

The ATS EAO has identified 22 key elements within an ATS Architecture with which future ATE acquisitions must comply.  These key elements were found to be critical to achieving the following benefits:

· Improve the flow of test related information throughout the weapon system life cycle.  The objective is to reuse information rather than recreate it.
· Significantly reduce the cost of Test Program Set (TPS) rehost activities.  The objective is to reduce the recurring engineering costs normally associated with rehosting TPSs from one tester to another.

· Facilitate the interoperability and interchangeability of test instruments with no penalty to previous ATE investments.  The objective is to allow insertion of technology or capability into an existing ATS without penalty to previous investments.

In the current environment, a large degree of commonality in testing requirements is ignored by the acquisition process.  The result is a lower use of “general-purpose” solutions in favor of “custom” and proprietary systems.  As time has passed, a built-in dependence on the custom solution has hampered the insertion of technology in ATS.  An expanded testing requirement or upgrade of equipment has meant a total reverse engineering effort (duplicating costs) and has facilitated the development of more proprietary systems.

To end the traditional approach of recreating information at each stage of the development cycle, a strong set of information interchange formats and services need to be developed.  Once developed, these product and test information formats can provide data to be reused rather then recreated. 

The traditional TPS development process has required significant reverse engineering efforts to determine the UUT test requirements, the methods used in the TPS, and parameters associated with the test.  This is information that was once available, but not passed from one phase of the life cycle to the next.  Therefore, the information has to be recreated when upgrades, modifications, or rehost activities are undertaken.  Inherent errors in the reverse engineering process also add to the cost of the activity.

5.0  Description of the ATS Architecture

The ATS architecture is an information sharing architecture that supports the transfer of information from one life-cycle phase to another, between components within an ATS, and between the ATS and the outside world.  The content and mechanisms for exchange of the data is what makes the current DoD ATS architecture different from previous efforts.  The information models and their associated services can be implemented in several different ways.  The following figure shows how this information is used.

[image: image9.wmf]Application Development

Environment

Instrument Drivers

Communication Management

VXI

GPIB

Other

Instrument Driver interface

Communication interface

Instrument interface


For purposes of clarity, the key elements in the ATS Architecture have been parsed into four functional groups:

· Models

· Components

· Interfaces

· Rules

5.1  Models

A model is a standard representation and set of definitions that captures the necessary knowledge and functionality of a system.  It provides a reusable framework for product development as well as testing various scenarios to determine the effectiveness of the system.  A model can handle complexity through hierarchical composition that preserves vital information at any level of abstraction.  This composition also applies to the description of the activities that could include functional interaction, states, and events that establish the behavior of the model when it is simulated.  The ATS architecture defines models of the information that must be present and persistent for various processes and contexts.  These information models carry both the formal syntax and semantics of various information entities as well as defined formats for exchanging information unambiguously between processes and life-cycle phases.

5.1.1  Digital Test Format (DTF)

This key element is intended to capture the output of Digital Automatic Test Pattern Generators (DATPG).  This is accomplished by defining data types and formats used in conjunction with digital test (e.g. vectors and fault dictionaries) from a digital test development tool to the test program.

DATPGs produce test pattern and diagnostic data that can be used for testing printed circuit assemblies on ATE.  The use of several DATPGs, all with individual output formats, created a need for many unique post-processors to be developed and maintained for the life of the ATE.  These post-processors supported the link from specific DATPGs to specific testers.  The proliferation of unique formats and post-processors have created logistics support problems and, consequently, identified a need for standardization.  A DATPG and ATE-independent output data format is required to limit the number of post-processors (one for each ATE) requiring life-cycle support.  

Digital test information consists of:

· Unit Under Test information

· Stimulus/Response Data

· Fault Dictionary Data

· Probe Data

The purpose of IEEE Std 1445-1998, Digital Test Interchange Format (DTIF), is to provide a standard format for test data generated by a DATPG.  The DTIF standard provides a neutral database for the development and delivery of digital simulation-based TPSs.  This standard defines the information content and the data formats for the interchange of digital test program data between DATPGs and ATE for board level printed circuit assemblies. 

5.1.2  Adapter Functional & Parametric Information (AFP)

Adapter Function and Parametric Data consists of the information and formats used to define to the Application Development Environment the capabilities of the test fixture, how the capabilities are accessed, and the associated performance parameters.  It is limited to the electrical behavior of the Interface Test Adapter (ITA).

5.1.3  Built In Test Data (BTD)

Built In Test Data can serve as a trigger for later maintenance actions, often taken during operations or in environments that cannot be duplicated or transferred to later maintenance levels.

5.1.4  Diagnostic Data (DIAD)

Diagnostic Data is an information model in this architecture.  It provides a standard representation of information used for diagnostics purposes.  This is done through three diagnostic inference models:

· A Common Element Model.

· A Fault Tree Model.

· An Enhanced Diagnostic Inference Model.

The Common Element Model defines information entities, such as a test, a diagnosis, an anomaly, and a resource.  The Common Element Model also includes a formal specification of costs to be considered in the test process.  The remaining two models represent knowledge that may be used by specific types of diagnostic systems.

The Fault Tree Model defines a decision tree based on outcomes from tests performed by the test system.  Each node of the tree corresponds to a test with some set of outcomes.  The outcomes of the tests are branches extending from the test node to other tests or to diagnostic conclusions (such as No-Fault-Found).

The Enhanced Diagnostic Inference Model is based on the dependency model.  Historically, test engineers used the dependency model to map relationships between functional entities in a system under test and tests that determine whether these functions are being performed correctly.  In the past, the model characterized the connectivity of the system under test from a functional perspective using observation points (or test points) as the junctions joining the functional entities together.  If a portion of the system fed a test point, then the model assumed that the test associated with that test point depended on the function defined by that part of the system.

5.1.5  Instrument Functional & Parametric Information (IFP)

Instrument Function and Parametric Data is test related information and data formats used to define what the test resources can measure, stimulate, and/or load the circuits to which it is attached.  It includes the command vocabulary by which the instrument can be controlled to apply these behaviors and the limits associated with instrument safety and resolution.

5.1.6  Multimedia Formats (MMF)

Multimedia Formats denote the formats used to convey hyperlink text, audio, video and three-dimensional physical model information from multimedia authoring tools to the end user.  Application of MMF to test-related information includes narrated video of test and repair operations, hypertext linked between test stations, TPS, fixtures and UUT documentation.

5.1.7  Maintenance & Test Data and Services (MTD)

There is a need to share maintenance information across levels and across weapon systems.  The current information structures are often service or weapon platform dependent.  While these systems do an admirable job of providing a logistics infrastructure, they seldom share information back up the maintenance chain or across platforms and services.  Given a standard set of definitions and data formats, information may be shared among all users who have implemented the standard forms.

5.1.8  Product Design Data (PDD)

Product Design Data is information that originates in the design process and which is needed for the development and sustainment of test and diagnostics.  PDD includes information about structures that are present in the product solely or principally to support test and diagnostics.  Boundary scans on components and test busses on circuit cards are classic examples of PDD that can greatly help the test engineer.  These are not test data but rather features of the product which allow greater access and control to the product than would otherwise be present.  (Of course, these features are usually only present to support test.  However, it is test requirements that convey the necessary test information about these product features).

5.1.9  Switch Functional & Parametric Information (SFP)

Switch Function and Parametric Data is the information and formats used to define the interconnect capabilities of the switch matrix, how these capabilities are accessed, and associated performance parameters.

5.1.10  UUT Test Requirements (UTR)

UUT Test Requirements include the information used to define to the test environment the load, sense, and drive capabilities that must be applied to the UUT to test it, including the minimum performance required for a successful test.  The test development process begins with a set of requirements.  Some of these requirements address the development process itself.  An example would be a requirement for a certain level of documentation or for the use of a particular test system.  Other requirements address the diagnostic portion of the test.  A common example is a requirement for a minimum level of fault detection or isolation.  The remaining requirements are test requirements, and these establish constraints on the final test program.

5.2  Components

A component is an architecture element that can be hardware, software, or a combination of both.  It must have explicit functionality and adhere to defined interface rules regarding data input and output.  However, its implementation need not be known or specified.  The implementation of a component in the architecture will typically require that a number of interface and model specifications be implemented.  This depends upon what other components it touches in the implemented architecture and how it must interact with the rest of the system.

5.2.1  System Framework System Framework (FRM)

A System Framework is a collection of system requirements, software protocols, and business rules (e.g., software installation) affecting the operation of test software with the underlying system computer and host operating system.  Parameters are defined for the system computer, operating system, instrument drivers, and application development environments.  These interfaces connect hardware and software products to form an integrated system.

5.2.2  Instrument Communication Manager (ICM)

[image: image10.wmf]Local Network Protocol

TELNET

File Transfer

Protocol

TFTP

TCP

User 

Datagram

Protocol

Internet

Protocol

ICMP

The Instrument Communication Manager element includes bus-specific options for communicating instruments and instrument drivers.

VISA gives VXI and GPIB software developers, particularly instrument driver developers, the functionality needed by instrument drivers in an interface-independent fashion for MXI, embedded VXI, GPIB-VXI, GPIB, and asynchronous serial controllers. VXIplug&play drivers written to the VISA specifications can execute on VXIplug&play system frameworks that have the VISA I/O library. 

5.2.3  Instrument Driver (DRV)

An instrument driver links the communication interface and an Application Development Environment.  It provides a higher level, more abstract view of the instrument.  The instrument driver adds additional abstraction to the instrument command language to reducing the knowledge and effort required to develop test applications.

5.2.4  Switching Matrix (SWM)

The Switching Matrix is a hardware element description of the switch paths that connect ATS test and measurement instruments to pins on the RFX.  It is a hardware component in this architecture.  The SWM must also work with the RFX element.

To remain upward compatible, the SWM must be designed in building blocks that can be duplicated to meet worst case requirements.  This facilitates a modular framework design that permits ATS integrators to incrementally augment their systems through add-on/duplicative features.  This allows them to meet worst case requirements while maintaining downward compatibility with any smaller I/O increment.

5.2.5  Computer to External Environments (CXE)

The Communication to External environment element defines the hardware necessary to facilitate communication between an ATS and remote systems.  Definition of this key element provides a standard, reliable, inexpensive mechanism of communication between an ATS and outside systems.

5.3  Interfaces

[image: image11.wmf]Product

Design 

Environment

ATS

Run Time

Environment

Information Framework

TPS

Application

Development

Environment

Product

Diagnostic and

Maintenance

Environment

ATS

Acquisition

Environment

Interfaces are the definitions of the methods by which a component may be accessed by other components.  Along with the methods, the data that must be communicated through the methods must also represented in a clear and unambiguous way, i.e., in information models.

5.3.1  Data Networking (NET)

The Data Networking element is a layered set of protocols that work with the hardware counterpart (CXE) to transfer information.  Computer communication systems are playing an increasingly important role in military, government, and civilian environments.  As strategic and tactical computer communication networks are developed and deployed, it is essential to provide means of interconnecting them and to provide standard inter-process communication protocols which can support a broad range of applications.

The Transmission Control Protocol (TCP) is intended for use as a highly reliable host-to-host protocol between hosts in packet-switched computer communication networks, and in interconnected systems of such networks.  TCP is a connection-oriented, end-to-end reliable protocol designed to fit into a layered hierarchy of protocols that support multi-network applications.  The TCP provides for reliable inter-process communication between pairs of processes in host computers attached to distinct but interconnected computer communication networks.  Very few assumptions are made as to the reliability of the communication protocols below the TCP layer.  TCP assumes it can obtain a simple, potentially unreliable datagram service from the lower level protocols.  In principle, the TCP should be able to operate above a wide spectrum of communication systems ranging from hard-wired connections to packet-switched or circuit-switched networks.

The TCP fits into a layered protocol architecture just above a basic Internet Protocol which provides a way for the TCP to send and receive variable-length segments of information enclosed in internet datagram "envelopes".  The Internet datagram provides a means for addressing source and destination TCPs in different networks.  The Internet protocol also deals with any fragmentation or reassembly of the TCP segments required achieving transport and delivery through multiple networks and interconnecting gateways.  The Internet protocol also carries information on the precedence, security classification, and compartmentation of the TCP segments, so this information can be communicated end-to-end across multiple networks.

The TCP interfaces on one side to user or application processes and on the other side to a lower level protocol such as Internet Protocol.  This interface consists of a set of calls much like the calls an operating system provides to an application process for manipulating files.  For example, there are calls to open and close connections and to send and receive data on established connections.  It is also expected that the TCP can asynchronously communicate with application programs.

The TCP is able to transfer a continuous stream of octets in each direction between its users by packaging some number of octets into segments for transmission through the Internet system.  In general, the TCP decides when to block and forward data at their own convenience.

The TCP is assumed to be a module in an operating system.  The users access the TCP much like they would access the file system.  The TCP may call on other operating system functions, for example, to manage data structures.  The actual interface to the network is assumed to be controlled by a device driver module.  The TCP does not call on the network device driver directly, but rather calls on the Internet datagram protocol module that may in turn call on the device driver.

5.3.2  Diagnostic Services (DIAS)

Diagnostic Services is a software component in this architecture.  It defines the basic services to be provided by a diagnostic reasoner.  These services link execution of a test with software diagnostic processes that analyze the significance of test results and suggest conclusions or additional actions that are required.

A standard way of traversing diagnostic models or actually performing diagnosis given test results is essential to TPS re-host activities.

5.3.3  Resource Adapter Interface (RAI)

The Resource Adapter Interface provides the standard interface between the UUT world and the ATE world.  In many places the elements of the UUT world overlap with the elements of the ATE world, and vice versa.  For example, the UUT test program is typically written not just to the needs of the UUT, but also to the capability of the ATE.  This results in the test program being restricted to the particular ATE it has been developed on.  The overlap can be reduced or eliminated by developing a standard interface between the UUT world and the ATE world.

5.3.4  Receiver/Fixture Interface (RFX)

The Receiver/Fixture Interface describes the hardware component that exists between the Receiver (part of the ATS) and the Fixture (part of the TPS).  The RFX establishes an electrical and mechanical connection between the Interface Test Adapter (ITA) and the ATS.  It is a primary component of any ATE through which the majority of stimulus and measurement signals reach the UUT.

5.3.5  Resource Management Services (RMS)

Resource Management Services is a software component in this architecture that includes services needed to perform virtual to real resource mapping, virtual resource management, test equipment configuration management, and real resource management.  ATE independent implementations may utilize this architecture element to provide a transportable means to bridge the gap between the test program and the ATE.

RMS allows the segregation of the test program from the hardware implementation.  Standardizing software interfaces to ATE test resources for the purpose of test asset management and test resource control does this.  This allows a TPS to be developed that is totally free of instrument specific test actions.

5.3.6  Run Time Services (RTS)

Run Time Services include software services needed by a test program and not handled by services supplied by other architecture elements.  Examples of such would include error reporting, data logging, and input/output functions.

5.4  Rules

5.4.1  Test Program to Operating System

This architecture rule prohibits system calls to the host operating system made directly from the test program.  Examples of this would be direct calls to storage devices and other input/output devices (keyboards, monitors).  This rule was extended to include all components, so that no component should circumvent the interface of another component in performing its function.  This rule helps to ensure that the open systems approach is utilized as designed in the ATS architecture.

5.5
ATS Architecture Reference Model

The following graphic depicts the relationships among the critical elements of the ATS architecture.

[image: image12.png]
6.0  Guidelines for the Implementing the ATS Architecture


Specifications and standards for each of the defined critical interfaces in the ATS architecture can be categorized as:

· Mandated - The DoD ATS EAO has mandated that these standards and rules be used in all ATS acquisitions

· Emerging - These standards are being evaluated by the EAO and the ARI, but have not yet been formally mandated. Their use is optional but should be strongly considered by the PM's ATS development team.

· Unspecified - A potential standard has not yet been developed

Based upon recommendation of the ARI, the DoD ATS EAO publishes mandated specifications and standards as EAO Notices (http://dodats.osd.mil).  These mandated specifications and standards are subsequently included in the ATS Subdomain Annex in the next issue of the DoD JTA, unless the JTA Working Group determines that they are not appropriate for the JTA.

When specifying criteria to which new ATS acquisitions must comply, the mandated specifications and standards in Section 7.0 should be cited in appropriate Statements of Work or other contractual documents.  

Appendix C contains information about obtaining the actual text of the standard or specification.


Appendix D lists various reference documents for more information on the interfaces, policies, and procedures mentioned throughout this Guide.

Appendix E summarizes the interdependencies among the standards and specifications cited in sections 7 and 8.


Appendix F lists the benefits to be gained by application of each of the critical interfaces in the ATS architecture.

7.0  Mandated Specifications, Standards, and Rules

ATS EAO NOTICE 3-97 of 8 September 1997 formally promulgated the six critical interface specifications and standards, as well as one rule, which are detailed in this section for use in all DoD ATS acquisitions and ATS modernizations.  Check the DoD ATS EA web site (http://dodats.osd.mil) for any subsequent released of mandated specifications and standards.

7.1  Digital Test Format (DTF)

IEEE 1445 – 1998.  Digital Test Interchange Format (DTIF)

7.1.1  Dependencies and Relationships 

This key element is not dependent on the presence or functionality of other key elements.  Its application is limited to the domain of digital test.

7.2  System Framework (FRM)

This standard currently defines frameworks for Windows, Windows 95, Windows NT, Sun, and HP-UX.  It addresses the system computer, operating system, instrument drivers, GUI design, Application Development Environments, system configuration, and documentation.

VXIplug&play Systems Alliance Specification titled: VPP-2: System Frameworks Specification, Revision 4.0, 29 January 1996.

7.2.1  Dependencies and Relationships

The FRM element may be incorporated at the ATS control computer level or at the instrument control level.  When used at the instrument control level, this key element must interact with the selected Application Development Environment, Instrument Drivers, and the Instrument Communication Manager.  In this case, implementing a system framework requires implementation of the ICM key element and the DRV key element.  

7.3  Instrument Driver (DRV)


The set of specifications identified below, identify the requirements for various aspects of instrument control.  These specifications provide the interfaces and general commands to be used for writing and utilizing instrument drivers in an ATS.

VXIplug&play Systems Alliance Specification titled: VPP-3.1: Instrument Drivers Architecture and Design Specification, Revision 4.0, 5 February 1996.

VXIplug&play Systems Alliance Specification titled: VPP-3.2: Instrument Driver Functional Body Specification, Revision 4.0, 2 February 1996.

VXIplug&play Systems Alliance Specification titled: VPP-3.3: Instrument Driver Interactive Developer Interface Specification, Revision 2.0, 2 February 1996.

VXIplug&play Systems Alliance Specification titled: VPP03.4: Instrument Driver Programmatic Developer Interface Specification, Revision 2.1, 2 February 1996.

7.3.2  Dependencies and Relationships

Use of this standard also requires the ICM and FRM key elements to be used.

7.4  Instrument Communication Manager (ICM)


The Virtual Instrument Software Architecture (VISA) set of specifications defines the low level communications interface between an instrument driver and the instrument(s) it controls.  Support for several types of interfaces is provided including GPIB, RS-232, and VXI.

VXIplug&play Systems Alliance Specification titled: VPP-4.1: VISA-1 Main Specification
VXIplug&play Systems Alliance Specification titled: VPP-4.2: The VISA Transition Library, Revision 1.0, 5 December 1995.

VXIplug&play Systems Alliance Specification titled: VPP-4.3: The VISA Library, Revision 1.0, 5 December 1995.

VXIplug&play Systems Alliance Specification titled: VPP-4.3.3: VISA Implementation Specification for the G Language
7.4.1  Dependencies and Relationships

Use of this standard also requires the DRV and FRM key elements to be used.

7.5   Data Networking (NET)


The software protocol required for communications between the ATS and external systems is TCP/IP as defined in the following specifications:

IETF Standard 7/RFC-793, Transmission Control Protocol, September 1981.  In addition, TCP shall implement the PUSH flag and the Nagle Algorithm, as defined in IETF Standard 3. 

RFC 2001, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms, 24 January 1997.

IETF Standard 5/RFC-791/RFC-950/RFC-919/RFC-922/RFC-792/RFC-1112, Internet Protocol, September 1981.  In addition, all implementations of IP must pass received Type-of-Service values up to the transport layer.

7.5.1  Dependencies and Relationships

The NET key element is the software component used with the CXE hardware component.  

7.6 Computer to External Environments (CXE)

Any hardware capable of supporting the following:

IETF Standard 7/RFC-793, Transmission Control Protocol, September 1981.  RFC-2001, TCP Slow Start, Congestion Avoidance, Fast Retransmit, And Fast Recovery Algorithms, January 24, 1997.

IETF Standard 5/RFC-791/RFC-950/RFC-919/RFC-922/RFC-792/RFC-1112, Internet Protocol, September 1981.

7.6.1  Dependencies and Relationships

This key element is the hardware component that supports the software communication protocol outlined in the NET element.  It works with the NET element to perform the communication functions.  

A communication conduit must be composed of a hardware (CXE) and software (NET) elements.  One does not exist without the other. 

7.7  Architecture Rule

Any element of the technical architecture that is implemented shall not be bypassed by a direct communication to another interface or layer further on in the process.

8.0  Emerging and Unspecified Standards

Where they exist, the specifications and standards included in this section may be cited in appropriate Statements of Work or other contractual documents.  However, since the standards in this section have not been formally recommended by the ARI, they should only be cited in cases where they have been reviewed and accepted for the particular application that is addressed by the contractual documents. 

8.1  Diagnostic Data (DIAD)

IEEE Std 1232-1995.  Standard for Artificial Intelligence Exchange and Service Tie to All Test Equipment (AI-ESTATE): Overview and Architecture

IEEE Std 1232.1-1997.  Trial Use Standard for Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE): Data and Knowledge Specification

8.1.1  Dependencies and Relationships

This key element interacts with Diagnostic Services and the selected Application Development Environment.  Implementation of the DIAD key element requires the use of the DIAS key element.

8.2  Diagnostic Services (DIAS)

IEEE Std 1232-1995.  Standard for Artificial Intelligence Exchange and Service Tie to All Test Equipment (AI-ESTATE): Overview and Architecture

IEEE Std 1232.2-1998.  Trial Use Standard for Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE): Service Specification

8.2.1  Dependencies and Relationships

This key element interacts with Diagnostic Data and the selected Application Development Environment.  Implementation of the DIAS key element requires the use of the DIAD key element.

8.3  Built In Test Data (BTD)

The ARI is monitoring the development of four standards (IEEE 1149.1, IEEE P1149.4, IEEE 1149.5, and IEEE 1545 Parametric Data Log and Format) as well as new initiatives in the area of BIT architecture and information exchange mechanisms.

8.4  Functional & Parametric Information 

This category includes the key elements: Adapter Functional & Parametric Information (AFP), Instrument Functional & Parametric Information (IFP) and Switch Functional & Parametric Information (SFP).  Recent work in the IEEE Standards Coordinating Council 20 will produce a standard titled IEEE 1226.3 Software interfaces for Resource Management Services that will include a normative annex addressing the requirements of these key elements.

8.5  Maintenance Test Data and Services (MTD)

The ARI is monitoring the development of IEEE P1522 and IEEE 1545 as well as new initiatives in the area of Maintenance Test Data and Services.

8.6  Multimedia Formats (MMF)

The ARI has identified no variations from the standard(s) called out by the Open Systems Joint Task Force Joint Technical Architecture, Version 3.0 document for the requirements of this key element.

8.7  Product Design Data (PDD)

The ARI is in process of defining the requirements of this key element.

8.8  UUT Test Requirements (UTR)

The ARI is working with Standards Bodies to publish the Test Requirements Model (TeRM) Language Reference Manual.

8.9  Switching Matrix (SWM)

The Receiver Fixture Interface (RFI) Alliance is working with the IEEE Standards Coordinating Council 20 to publish a series of standards in this area.

8.10  Resource Adapter Interface (RAI)

The ARI is organizing working groups to address the requirements of this key element. 

8.11  Receiver/Fixture Interface (RFX)

The Receiver Fixture Interface  (RFI) Alliance is working with the IEEE Standards Coordinating Council 20 to publish a series of standards in this area.

8.12  Resource Management Services (RMS)

Recent work in the IEEE Standards Coordinating Council 20, will produce a standard titled IEEE 1226.3 Software interfaces for Resource Management Services that addresses the requirements of this key element.

8.13  Run Time Services (RTS)

The ARI has completed the definition of this key element.  At the current time, a draft document is available and is being carried forth to a recognized Standards body for consideration and publication.

Appendix A - Service Points of Contact

U. S. ARMY

COL. Jerry Hamilton, US Army

U.S. Army TMDE Activity

Code: AMSAM-DSA-TMDE

Redstone Arsenal, AL  35898-5400

Phone:  Comm:  (256) 876-4792; DSN 746-4792

FAX:  Comm: (256) 955-6361; DSN 645-6361

E-mail:  albert.hamilton@redstone.army.mil

U. S. NAVY

Ms. Marie A. Greening

Code:  PMA-260

Naval Air Systems Command

47123 Buse Road, #IPT

Patuxent River, MD  20670-1547

Phone:  (301) 757-6899; DSN 757-6899

FAX:  (301) 757-6902: DSN 757-6902

E-Mail:  greeningma@navair.navy.mil

U. S. AIR FORCE

COL Wright A. Nodine, Jr., USAF

Automatic Test Systems Product Group Manager (ATS PGM)

SA-ALC/LDA

308 Avionics Circle, Suite 2

Kelly AFB, TX  78241-5947

Phone:  (210) 925-3351; DSN 945-3351

FAX:  (210) 925-5411; DSN 945-5411

E-Mail:  wanodine@ldapo.kelly.af.mil

U. S. MARINE CORPS

LCOL Marie Juliano, USMC

Code:  TMDE

Marine Corps Systems Command

2033 Barnett Ave., Suite 315

Quantico, VA  22134

Phone:  (703) 640-4457; DSN 278-4457

FAX:  (703) 640-2168; DSN 278-2168

E-Mail:  julianomg@mcsc.usmc.mil

U. S. SPECIAL OPERATIONS COMMAND

COL Norman Gebhard, US Army

Code:  SOAL-LM

U. S. Special Operations Command

7701 Tampa Point Blvd

MacDill AFB, FL 33621-5323

Phone:  (813) 828-3158; DSN 968-3158

FAX:  (813) 828-3885; DSN 968-3885

E-mail:  gebharn@socom.mil

Appendix B –  Automatic Test Equipment

Automatic Test Equipment (ATE) comprises a set of electronic components and interfaces that are used for testing, diagnosing, and isolating faults in electronic systems, devices and components.  This Appendix provides an overview of typical ATE components.

Although ATE may vary in implementation from a small hand-held unit to a large, multi-rack tester, there are ATE system categories that are common across all ATE.  This section discusses the common ATE system components to provide insight into the design of typical ATE.  The ARI’s effort to define an open architecture for automatic test systems produced the following representative diagram of a generic test system.

[image: image2.wmf]Software / 

Test Program

Host Computer

Receiver

Buses

Switching

Instruments

UUT

Fixture

General ATS Architecture

genatsar    Figure 6


For purposes of this Appendix, the fixture and Unit Under Test boxes in the figure are irrelevant since they are components of the broader category referred to as Automatic Test Systems (which, in addition to the ATE, encompass test software, fixtures and the test environment).  This Appendix will be limited to the actual equipment used to perform the testing, not the UUT or any connection mechanisms beyond the receiver. 

ATE can be broken down into the two major system categories of hardware and software which will be described and further subdivided in following sections. 

Hardware

Hardware is set of physical devices that make up the ATE.  Although ATE hardware is available in widely different shapes, sizes, and capabilities, most ATE shares at least some common components. 

Host Computer

Host computers provide automatic control functions.  They generally control the displays and user interface hardware that allow the user to interact with the ATE.  Host computers vary from embedded microprocessors to all forms of desktop, mini- or mainframe computers. 

Host computers control the movement of test programs and data in and out of the system.  The typical ATE hosts a large number of test programs which are stored on external devices such as removable disks and loaded for execution as required.  The host computer communicates with external storage devices or networks to access test programs.

The controller is the computer that accesses the ATE’s instrumentation. It can be, but is not necessarily, the host computer.  The controller is generally the server on any instrumentation bus present.  Through the instrumentation bus the controller handles commanding instrumentation, synchronizing actions, obtaining data, and other instrument related functions.  The use of microprocessors for controllers is by far the most prevalent implementation found today. 

The display device is a component of the host computer that provides the user with feedback.  A display device can vary from a simple Light Emitting Diode (LED) to modern, high resolution, color, flat panel displays.  Most modern systems use video display devices.  System requirements and user information needs are considered when display devices are selected.  

Instrumentation Buses

Instrumentation buses are the physical means by which a test equipment controller connects and communicates with ATE instrumentation.  They provide control commands and data transfer to and from instrumentation in order to perform needed instrument actions.  Some busses can provide the means for instruments to intercommunicate by providing triggering mechanisms within the bus structure.  Although many legacy ATE incorporated proprietary bus structures, today most modern ATE take advantage of commercially available instrumentation buses.  In doing this, the ATE designers help to de-couple the architecture so that the elements connected at either end of the bus are not proprietary, which prohibits interchangeability.  In other words, these types of commercially accepted and standardized bus components allow instruments and controllers to be more easily interchanged. 

There are many examples of instrumentation busses.  IEEE-488, VXI, SCSI, PCI and others are examples of commercial, non-proprietary, standardized buses in wide use today.  Some bus architectures are implemented in the form of controller cards and cable arrangements.  Generally in this arrangement, the controller cards are plugged into an existing computer bus and the instrumentation bus’ cable is used to connect the computer using the controller card connection to the instrument.  IEEE-488, SCSI and RS232 are examples of these types of cables. 


[image: image3.wmf]IEEE-488



 EMBED Word.Picture.8  [image: image4.wmf]RS-232 serial



 EMBED Word.Picture.8  [image: image5.wmf]SCSI


Another bus architecture that is commonly used today is the back-plane type instrumentation bus.  These buses are implemented as a series of bus connectors attached to a printed circuit board that provides the electrical routing just as the cable does for the cable/controller card arrangement.  The bus is usually provided in a card cage assembly so that instruments conforming to the architecture can be guided and supported structurally when being used.  This architecture tends to provide much faster instrument access and is generally indicative of much smaller system architectures.  An example of the back-plane bus architecture follows. 


[image: image6.wmf]VXI

BUS

&

CHASSIS


Instrumentation

As mentioned previously, instrumentation is generally connected and controlled through some sort of instrumentation bus.  The instruments are the devices in the ATE that actually supply or receive the desired electrical phenomenon.  Frequency-Time Measurement instruments, Digital MultiMeters and Spectrum Analyzers are examples of instrumentation.  Instruments have ports that may be for inputs, outputs, triggering, and synchronization.  Instruments may be physically arranged in a way that allows the user to connect leads or harnesses manually for testing purposes.  Another very prevalent instrumentation implementation is for the instrument to be connected through a switch matrix to the Receiver of the ATE which eventually provides connection to the UUT.  Various factors, such as frequency ranges, throughput and end user capability, determine the methods by which an ATE allows access to instrumentation.  Many ATEs use instruments that can themselves be stand-alone test entities while others are useless without an external controller.  

Instrumentation comes in various packaging styles including 19-inch rack units, VXI instrument on a card packaging, PC plug-in cards and others.  Although modern systems are tending towards the smaller form factor options, many existing ATE systems use the 19 inch rack packaging such as that shown below.


[image: image7.wmf]The US Navy CASS

Basic Configuration.

Primarily 19 inch rack

mounted equipment.


The tendency towards incorporating smaller form factor devices is driven by the same pressures found in other electronics domains.  The results are smaller, cheaper, faster, more dependable components.  An example of a VXI instrument on a card is shown below.


VXI instruments are approximately one order of magnitude smaller than similar 19-inch form factor instruments.  There are other even smaller standardized instrument packaging methodologies becoming available in the market today, particularly PCI- and PCMCIA-based devices.  Some of the factors in selecting a packaging style are utilization environment, cost, and ruggedness.

Receiver

The receiver is the component of the ATE where wiring harnesses or interface devices are connected in order to provide electrical contact with the UUT.  Receivers must deliver the parametric electrical characteristics desired in and out of the ATE and must be carefully selected to ensure that proper electrical performance can be achieved.  

Receivers provide a fixed quantity of connections possible for interface with the UUT.  Receiver contacts are very important in performance of their function and are selected on many factors including durability, power throughput, and signal frequencies.  Receivers can be as simple as connector assemblies available at a front panel and as complex as hundreds of pins in bed-of-nails arrangements.  Although receivers are generally static devices, they require detailed attention in order not to inhibit intended test system functionality.  A good example of a complex, multi-band, high pin count receiver is shown in the following figure.

[image: image8.jpg]
Switching Unit

The Switching Unit is an ATE component that allows electrical signals to be directed to various connections at the UUT.  As with the Receiver, the Switch must be carefully selected to provide the intended signal fidelity.  Characteristics such as signal frequencies, power, and rates must be determined to select adequate switching components.  The Switching Unit is another device type that is generally controlled by the instrument controller.  The Switch does not provide or derive any functionality from the UUT; it only provides pathways so instruments are allowed to do so.

Software

The programming instruction code that drives the different components contained in an ATE can be categorized as the ATE Software.  Although ATE varies widely in software implementations, generally the categories of software discussed in the following sections are incorporated in some manner.

Operating System

ATE operating systems provide the software required to access the computational and control capabilities of the computers upon which they run.  The operating system provides the software foundation for all other system software, including test programs.  The operating systems are often the same packages running many office computers today such as Microsoft  NT, Windows 95/98, Sun Solaris, and various other Unix software.  Although many ATE often use commercially available operating systems, there are many examples of proprietary and uncommon systems in use.

Run Time System 

Run Time systems provide the test program with access to the tester’s hardware and system control features.  As the Run Time System depends on the operating system for support in accessing the host computer capability, so the test program depends on the Run Time System to provide the access to test capabilities.  Some systems allow test programs to access the operating system directly, in essence providing the their own run time support.  More often, in most complex military test systems, a separate run time environment is used.  Although progress is being made toward standardizing the run time system functionality, most run time systems in use today remain proprietary.  Discussions concerning some common sub-components of most Run Time Systems follow.

Diagnostics

Diagnostics are the software facilities that, using test information gathered during run time, provide procedures for further testing and information concerning failures with the purpose of identifying failures and repairing faulty UUTs.  Any software that uses information to make decisions about further testing, ending a test, or determining what is wrong with the UUT based on test results is considered diagnostics. 

Some test programs incorporate diagnostics themselves.  In these situations, a test program may alter program flow, halt a test, produce failure information on it’s own, or invoke other decision making events. 

Often diagnostics are separate software components that use information produced by a test program to identify failed components or make decisions for further testing.  In these implementations, data must be provided in a way the diagnostics software can use the information or some form of translation must occur to prepare that data for use by the software.  These types of modularized diagnostics software entities are often found in, but are not limited to, digital testing implementations.

Instrument Drivers

Instrument drivers are the lowest level of software and are generally provided with an individual instrument by the manufacturer.  Their purpose is to allow the run time system and test program software access to the instrument capabilities.  Although progress is being made toward standardizing instrument driver methods, no real common approach has yet been developed.  Instrument drivers remain as unique as the instruments that they support.

Resource Management

Resource Management software provides functionality to allocate, deallocate and manage test assets.  Test programs access resource management capability through runtime systems, either knowingly or unknowingly, in order to access test assets.  Resource Manager software provides a housekeeping service for the ATE to provide orderly and coherent test asset usage.  

In many test systems, test programs perform their own resource management.  The functionality can be implicit in the program knowledge of test systems capabilities or it can be explicit in some self-tracking methodology.  

Generally, larger test systems contain Resource Management software that is external but assessable to the test programs.  In these systems, the test programs make calls to the Resource Management software module in order to invoke resource management functionality. 

Development Environment

The development environment is the software that provides the tools to develop and sometimes debug test programs.  Although the development environment is not typically part of the ATE system, it is described here due to its close ties to the ATE.  Analog test program and digital test program development environments are generally found to be separate today.  This situation may change as more devices become mixed signal which require both types of testing to be collaborative. 

Probably the most common software component available in the development environment is the editor.  Editors are provided to allow the test program source code to be written and changed. 

Compilers are also typical tools available in the development environment.  Compilers convert source code to machine-readable format that is generally passed to a linker tool that provides bootstrap and software module mapping required in building a finished executable program. 

Another tool that is often found in the development environment is the simulator which allows developers to predict outcomes based on developed inputs.  In the past, simulators available for ATS purposes were primarily digital simulators.  Recent advances in simulator technology are starting to make analog simulators available for test software development.

Test Programs

Test programs are the software programs that access the functionality of the runtime environment.  They provide the sequencing and describe the behavioral functionality required of the test system in order to perform tests on the UUT.  There are several standard languages and data formats in use, including the ATLAS language for analog and simple digital testing, and the DTIF standard for digital vector representation.  Many other test languages and general purpose languages are widely used for test programming purposes.  Test programs are typically developed on a per UUT basis.  Test programs are the product of and purpose for the development environment.

Appendix C  - Document Sources 

Copies of VXIplug&play System Alliance specifications may be obtained from:  VXIplug&play System Alliance, 6504 Bridge Point Parkway, Austin, TX 78730.

Copies of IEEE standards may be obtained from:  Secretary, IEEE Standards Board, Institute, Attention Electrical and Electronics Engineers, Inc., P.O.  Box 1331, 445 Hoes Lane, Piscataway, NJ  08855-1331, USA or call 1-800-678-4333

The Internet Architecture Board (IAB) publishes several of the standards mandated in this Guide.  The IAB is responsible for the Internet Protocol (IP) suite, and documents these protocols using Requests for Comment (RFCs) and Standards (STDs).  STDs are a subseries of notes within the RFC series that are formal Internet "Standards."  The Internet Engineering Steering Group (IESG) has established certain RFCs as the official standard protocols for the Internet.  All IAB documents are available free of charge via anonymous ftp in the directories under the URL  ftp://ds.internic.net/.  RFCs are available, free of charge, via e-mail using the following address:  mailserv@ds.internic.net.  "Send rfcxxxx.txt" in the body.  RFCs may also be obtained from:  SRI International, Room EJ291, Network Information Systems Center, 333 Ravenswood Avenue, Menlo Park, CA  94025, USA.

DoD ATS Executive Agent Notices may be obtained at http://dodats.osd.mil.

Appendix D - Reference Documents

1. ARI Systems Engineering Plan, Version 2.0 February 1998.  Automatic Test Systems Research & Development Integrated Product Team (ARI).

2. Automatic Test Systems 1997 Master Plan, June 1997. ATS Executive Agent Office.

3. Defense Standardization Program, 29 June 95.  Office of the Secretary of Defense (Economic Security).

4. DoD Joint Technical Architecture.  Version 2.0, 31 October 1997.  Defense Information Systems Agency Center for Standards.

5. DoD Regulation 5000.2-R.  March 1996.  Office of the Secretary of Defense (Acquisition and Technology).

6. IEEE Std 1226.3-1998.  Trial Use Standard for Software Interfaces for Resource Management Services.

7. IEEE Std 1232-1995.  Standard for Artificial Intelligence Exchange and Service Tie to All Test Equipment (AI-ESTATE): Overview and Architecture

8. IEEE Std 1232.1-1997.  Trial Use Standard for Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE): Data and Knowledge Specification

9. IEEE Std 1232.2-1998.  Trial Use Standard for Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE): Service Specification

10. IEEE 1445-1998.  Standard for Digital Test Information Format (DTIF), Ver 2.0

11. IEEE 1545-1999.  Trial Use Standard for Parametric Data Logging and Format.

12. ATS EAO Notice 3-97.  8 September 1997.  ATS Executive Agent Office Notice 3-97.

13. VPP-2: System Frameworks Specification.  Revision 4.0, 29 January 1996.  VXIplug&play Systems Alliance.  A VXIplug&play specification that defines frameworks that allows systems to be assembled without concern for the interoperability of the selected components.

14. VPP-3.1: Instrument Drivers Architecture and Design Specification.  Revision 4.0, 5 February 1996.  VXIplug&play Systems Alliance.  A VXIplug&play specification that provides an overview of the design, scope, and use of instrument drivers.

15. VPP-3.2: Instrument Driver Functional Body Specification.  Revision 4.0, 2 February 1996.  VXIplug&play Systems Alliance.  

16. VPP-3.3: Instrument Driver Interactive Developer Interface Specification.  Revision 2.0, 2 February 1996.  VXIplug&play Systems Alliance.

17. VPP-3.4: Instrument Driver Programmatic Developer Interface Specification.  Revision 2.1, 2 February 1996.  VXIplug&play Systems Alliance.

18. VPP-4 Virtual Instrument Software Architecture.  A VXIplug&play specification that defines a unified architecture for controlling VXI, IEEE-488, and RS-232 instruments.

Appendix E - Key Element Dependencies

Element
Standard
Dependent On…

Digital Test Information Format
IEEE P1445 - Digital Test Interchange Format (DTIF)
None

Instrument Communication Manager
VXIplug&play Systems Alliance Specification titled: VPP-4.1: VISA-1 Main Specification

VXIplug&play Systems Alliance Specification titled: VPP-4.2: The VISA Transition Library, Revision 1.0, 5 December 1995.

VXIplug&play Systems Alliance Specification titled: VPP-4.3: The VISA Library, Revision 1.0, 5 December 1995.

VXIplug&play Systems Alliance Specification titled: VPP-4.3.3: VISA Implementation Specification for the G Language
Instrument Drivers and System Framework

Instrument Driver
VXIplug&play Systems Alliance Specification titled: VPP-3.1: Instrument Drivers Architecture and Design Specification, Revision 4.0, 5 February 1996.

VXIplug&play Systems Alliance Specification titled: VPP-3.2: Instrument Driver Functional Body Specification, Revision 4.0, 2 February 1996.

VXIplug&play Systems Alliance Specification titled: VPP-3.3: Instrument Driver Interactive Developer Interface Specification, Revision 2.0, 2 February 1996.

VXIplug&play Systems Alliance Specification titled: VPP03.4: Instrument Driver Programmatic Developer Interface Specification, Revision 2.1, 2 February 1996.
Instrument Communication Manager and System Framework

System Framework
VXIplug&play Systems Alliance Specification titled: VPP-2: System Frameworks Specification, Revision 4.0, 29 January 1996.
Instrument Driver and Instrument Communication Manager

Data Network
IETF Standard 7/RFC-793, Transmission Control Protocol, September 1981.  In addition, TCP shall implement the PUSH flag and the Nagle Algorithm, as defined in IETF Standard 3. 

RFC 2001, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms, 24 January 1997.

IETF Standard 5/RFC-791/RFC-950/RFC-919/RFC-922/RFC-792/RFC-1112, Internet Protocol, September 1981.  In addition, all implementations of IP must pass received Type-of-Service values up to the transport layer.
Computer to External Environment to perform hardware communication functions

Computer to External Environments
IETF Standard 7/RFC-793, Transmission Control Protocol, September 1981.  RFC-2001, TCP Slow Start, Congestion Avoidance, Fast Retransmit, And Fast Recovery Algorithms, January 24, 1997.

IETF Standard 5/RFC-791/RFC-950/RFC-919/RFC-922/RFC-792/RFC-1112, Internet Protocol, September 1981.
Data Networking to perform software communication functions.

Test Program to Operating System
Architectural Rule
None

Appendix F - Key Element Benefits

Adapter Functional & Parametric Data
The AFP is critical to ARI objectives because of the high cost associated with ITA re-design when TPSs are moved from one platform to another.

Built In Test Data
BTD is considered critical in this architecture because of the potential impact it has to improve the quality of diagnostics during test and repair actions.  BTD working with diagnostic tools can reduce test and repair actions by starting the test program further along in the process.  This is sometimes referred to as a “directed TPS” which will start its testing at different places depending on symptoms or other input information.  The monitoring of BTD can help identify “bad actors” or incipient failure modes as well as prognostics.

Computer to External Environments
A communication conduit from an ATS to remote systems supports: distributed testing scenarios, software updates, transfer of bit data from UUT, input and output of data for maintenance records, and TPS development / maintenance / enhancement.

Data Networking
NET will reduce cost associated with TPS development and run time execution.   It identifies a standard communication protocol between the ATS and remote systems.  It works together with CXE to achieve these benefits.

Diagnostic Data
DIAD will reduce costs normally associated with a TPS re-host activity.  It also leads to lower Can-Not-Duplicate and No-Fault-Found errors.  If integrated with BTD, it can reduce TPS test and repair actions.

Diagnostic Services
DIAS will reduce costs normally associated with a TPS re-host activity.  It also leads to lower Can-Not-Duplicate and No-Fault-Found errors.  Lower costs for TPS re-host activities will be achieved by automatic test synthesis by diagnostic services from data harvested from the product development process.

Digital Test Format
The primary benefit of this key element occurs during the TPS rehost of a digital test.  It provides digital test data in a format directly readable by the ATS, eliminating roadblocks in the process created by unique post processor data formats.  Supports a tester independent methodology for representation of digital tests.  This standard is primarily intended for use by digital simulator developers/maintainers and TPS developers/maintainers.

Instrument Communication Manager
A standardized ICM interface enables higher level software to be interoperable and portable between vendors and across different platforms.  The Test Program does not need to be tied to bus-specific instrument commands, as has been prevalent in the past.

Instrument Drivers
Standard instrument drivers allow suppliers of instruments to be responsible for developing their own instrument drivers and be assured of the interoperability with those from other suppliers.  System level openness and multi-supplier interoperability is greatly enhanced.

A standard practice for developing instrument drivers also minimizes the duplication of effort within the industry.  Higher-level application development environments can operate with a large variety of suppliers who adhere to the standard instrument driver development paradigm.  These same reasons also lead to lower operating training costs (no “learning-curve” to repeat) and lower software programming costs (software reuse.)

Instrument Functional & Parametric Data
The IFP will reduce cost associated with TPS re-host activities by providing a common description of test station assets which will be utilized by the TPS development environment and run time execution when directing test actions.  It can also be used to compare a UUT’s test requirements to a candidate test system’s capability for purposes of validating test requirements on the targeted ATE.

Maintenance & Test Data and Services
MTD enhances run time execution of the test program by capturing and using information developed during maintenance activities.  This directly interfaces with DIAD and DIAS by providing information that can supplement diagnostic capabilities.  A standard format for maintenance data can also be used in the design and development of future models of the system by placing constraints on the design engineer.

Multimedia Formats
This element was deemed critical to the ARI objectives by reducing costs associated with TPS transportability.  It provides a way to reduce reverse engineering efforts associated with test related information in the test program and the ATE.  Adding the advantages of on-line documentation to ATS should increase the productivity of test personnel.

Product Design Data
PDD supports the reuse of data rather than the recreation of it.  It facilitates the transfer of information from CAD workstations to the TPS development, reducing errors and development time.  PDD supports the back-annotation of test and maintenance information into the design environment, reducing sustainment costs.

Receiver / Fixture Interface
A standard in this area could directly reduce costs associated with TPS re-host activities by providing a standard pin map and mating section of the ITA to the ATE. The RFX is critical to the objectives of the ARI because of three criteria:

1.  Level of Applicability is the degree to which the RFX influences TPS re-host costs.

2.  Open System Design is important for government acquisition guidelines.  The recommended RFX should conform to current acquisition policy on open systems.

3.  Scaleability is essential to minimize costs of fixturing by scaling the fixture to meet only what is necessary to interface the ITA to the ATE.

Resource Adapter Interface
This interface references the lowest interface of the UUT behavior world within an ATE system.  This interface is a doorway to the instrument world within the system architecture.

Resource Management Services
The RMS ensures that if the low-level drivers and instrument buses are compatible, instrument resources can be interchanged from a software viewpoint.  In addition, the RMS promotes TPS re-host as long as compatible resource modes are available on both ATE systems, even if the specifications of those resources are different.  Use of this key element will drastically reduce TPS re-host costs between functionally equivalent testing platforms and promote instrument interchangeability.

Run Time Services
This element is critical to ARI objectives because of the impact on TPS transportability.  Standardizing a set of run time services will facilitate the transfer of TPSs from one platform to another by reducing reverse engineering costs normal associated with that activity.  This is accomplished by inserting a standard layer to insulate the test program from specific operating systems or hardware platforms.  Without a standard run time interface, service requests from test programs not available on a target system would require extensive test program modification, and therefore, costs.

Switch Functional & Parametric Data
An adequate description of switching capabilities is necessary to TPS transportability issues.  Use of the SFP should facilitate reuse of information related to switching during TPS re-host activities, noticeable as a reduction in reverse engineering costs for this type of activity.

Switching Matrix
This simplifies ITA design, reduces TPS costs, and places the switching under control of the ATE system software.  The SWM works with the RFX to reduce costs associated with TPS transportability.

System Framework
The system framework sufficiently describes the system level interfaces within each framework so that a vendor can ensure component compliance and compatibility.  Frameworks address the problems of selection and integration of system components.

Test Program to Operating System
Direct operating system calls from a test program limit the transportability of the test program.  This architectural rule is intended to prohibit such actions.

UUT Test Requirements
A clear understanding of UUT test requirements is critical to any TPS re-host effort.  For first-time TPS development, the lack of formal test requirements is sometimes offset by support from the product designers.  For TPS re-host, however, such support is unavailable and the test engineer must reverse-engineer the test requirements from the existing TPS.  This is difficult because the TPS is a mixture of test requirements and implementation decisions, and these must be separated.  A re-hosted TPS must obey the test requirements but is free to ignore the implementation decisions.

Switch

Matrix



�



�



Receiver/

Fixture



VPP-3.x



VPP-4



Communications

Manager



Instrument

Drivers



Resource

Adapter

Interface



IEEE P1232.2



Diagnostic

Services



IEEE P1226.3



Multi-Media

Formats



IEEE P1226.10



Resource

Management

Services



Run-time

Services



IEEE P1226



VPP-2



Network





IAB STD 5 & 7

(TCP/IP)



IEEE P1226.11



IEEE P1226.11



IEEE P1226.11



IEEE P1445



Digital Test

Format



Adapter

Functional and

Parametric Data



Switch

Functional and 

Parametric Data



Instrument

Functional and 

Parametric Data



SYSTEM INTERFACES



INFORMATION FRAMEWORK



IEEE P1232.1



TeRM



IEEE P1389



EDIF



Diagnostic

Data



UUT Test

Requirements



Maintenance

Data



Built-in

Test

Data



Product  

Data



Test

Program

Documentation





_991805081.doc
[image: image1.png]

RS-232 serial









_991805163.doc
[image: image1.png]

SCSI









_991806362.doc
[image: image1.png]

VXI


BUS


&


CHASSIS









_991804988.doc
[image: image1.png]

IEEE-488









_991632001.doc
[image: image1.png]

The US Navy CASS


Basic Configuration. Primarily 19 inch rack mounted equipment.









