
1

Contact Information:

L. Philip Odence
Vice President of Business Development
Black Duck Software, Inc.
8 New England Executive Park, Suite 211, Burlington MA 01803
Phone: 781.810.1819, Mobile: 781.258.9502
Skype: philip.odence
podence@blackducksoftware.com
http://www.blackducksoftware.com
http://twitter.com/podence
http://www.linkedin.com/in/podence
http://www.networkworld.com/community/odence (my blog)

Quick background for context:
Black Duck provides products and services that help development
organizations gain the benefits of open source while managing the risks.

The company has been in business for about 10 years. We are growing
at about 35% and now approximately 150 employees. Headquarters are
in Burlington, MA, but we have employees across the US and in Europe
and Asia. We’ve done business with about 1000 organizations in 24
countries.

By any measure we lead the market for the types of products and
services we offer and certainly have more experience than any company
in helping organizations with OSS governance.

From this experience we have developed a view on the benefits and
risks of using open source components in development.

2

Gartner Group‘s lead analyst on open source, Mark Driver (data in the
slide is from November 2010), summarized the benefits and key
challenges of using OSS. This position completely aligns well with Black
Duck’s experience: You have to use open source, but there are
challenges/risks that require management.

In addition, Driver has commented on the ubiquity of open source, that it
is unavoidable and should be embraced as part of normal development
process. Mark also made the following predictions:

-- By 2016, OSS will be included in mission-critical software portfolios
within 99% of Global 2000 enterprises, up from 75% in 2010.
-- By 2014, 50% of Global 2000 organizations will experience
technology, cost and security challenges through lack of open-source
governance.

3

4 4

Whether DoD personnel or contractors, and whether its open source
software or otherwise, this is how most software is developed today.
Pressure on software developers has lead to a process of assembling
components from a variety of sources and increasingly open source. We
call this “Multi-source Development” and believe it is the “new normal”
for software development.

The real picture is actually much more complex because every piece of
code used in development likely comes from multiple sources as well.
So there are many complex paths by which unidentified components can
find their way into a code base.

The real point is that today it is not easy to know what components are
actually in your code and to therefore identify the associated risks.

Given the multi-source style of development and the increasing use of
open source, there are fundamental forces that increase the potential of
code risks:

-There’s an enormous amount of code out there freely available to
anyone with a browser. Some of it is great code, some of it has problems
with respect to security vulnerabilities, quality, documentation, support,
maintainability, and licensing.
-This wealth of code is highly attractive to developers, but inherently
difficult to control, and few companies have near the requisite controls in
place. Without proper controls in place, decisions about what
components end up in software are being made by individual
developers.
-Supplier personnel who are making assertions about code content,
typically don’t know. Software development has changed so much over
the last few years that the folks in charge are generally not in touch with
what developers are doing. And, even if they are in conceptual touch,
without governance in place, they literally can’t know the details of what
components are being used where.

5

There is no way to comprehensively analyze how much of what
components are used where out in the wild. However, Black Duck has
performed 1000s of audits of code, typically closed-source commercial
code and so we have some sense for the state of the system.

Of the code bases we scan, it is typical that 20% of the code is open
source. (We’ve seen as high as 90%.) Often we are doing these code
content audits in the context of a company being bought and we are
comparing to a declared software Bill of Materials that a company has
generated at the request of the buyer. Almost every time we find code
that the code contains open source components that were unknown to
the code owner. And, more than half the time, these components are
licensed under licenses that are GPL-style or for which the licensing can
not be determined.

The bottom line is that even companies that make an effort to determine
what is in their code are generally unable to do so with any accuracy.

6

We have certainly seen proprietary code turn up in open source code. In
one case, we informed a company that their code matched closely to an
open source project and they discovered that a disgruntled employee
had stolen their proprietary code and made it available to the world as
open source. However, organizations and developers are generally more
sensitive to ownership of proprietary code, and therefore proprietary
code is less likely to “wander” than is open source. So, it is more
common for the issue to be incompatible open source licenses in an
open source component or in proprietary code. The Eclipse Foundation,
for example, scans and analyzes every piece of code that comes in the
door for this reason.

Another risk worth considering is code leaking out into the open source
world. There are great self-serving reasons to make contributions back
to open source projects, but there need to be controls on what goes out
the door.

It’s important to broaden the perspective on risk beyond license/
copyright risk. There are plenty of other reasons to want to know what’s
in your code, beyond the legal ones. Only by knowing the source of

7

There’s little choice about using open source off the shelf as well as in
the form of components in developed code. The benefits are just too
great to ignore. However, along with the benefits come risks, not just
legal, but also risks with respect to security, quality and future
maintainability. Those risks need to be managed and it is imprudent to
assume contractors are doing so properly. The key for the DoD is to
ensure that their contractors are sufficiently open source savvy to
manage the risks.

8

