Executive Summary

Avionics / Real-Time Operating System (RTOS) Requirements Comparison Document

PNUM 21

Background: Today’s budget constraints have generated greater interest in leveraging open systems. In the area of real-time military avionics, there are a number of related standards that can be leveraged, such as POSIX. These standards address many of the necessary issues in the area of real-time military avionics, but also contain deficiencies. In order to increase the use of open systems within Department of Defense programs, the deficiencies that exist in today’s standards need to be identified and rectified.

The Joint Strike Fighter (JSF) System Program Office has conducted studies to determine the feasibility of using the Portable Operating System Interface (POSIX) as the Application Programming Interface (API) in a real-time avionics environment. In these studies, requirements were compared to Hughes avionics operating systems which are used in many military avionics systems today.

Hughes has performed numerous trade studies addressing RTOS issues, including a 1997 DISA-funded study. The results were published in a POSIX / Avionics Operating System Delta Document. Other studies range from examining and comparing capabilities of Commercial Off-The- Shelf (COTS) real-time operating systems to evaluating the feasibility of POSIX as the API in a real-time military avionics environment.

POSIX / AOS Delta Document: The POSIX / AOS API comparison consisted of four main tasks:

Hughes worked with the Society of Automotive Engineers (SAE), Avionics System Division, and Operating System Application Programming Interface Working Group to define the requirements for a real-time embedded military operating system.

The study evaluated the two APIs (POSIX and AOS) and the Ada 95 language features provided by Ad 95 against the requirements produced by the SAE working group.

The study generated a detailed comparison matrix presenting how each of the API’s features fulfilled the requirements and how the APIs compared to each other.

The study presented a conclusion on the feasibility of using POSIX for real-time embedded military avionics and made a recommendation on steps needed to make POSIX more applicable to real-time embedded military avionics.

This study has been well received and has quickly become the definitive report on POSIX capabilities in military avionics.

Working Groups: Hughes is an active participant on POSIX working groups and an influential contributor to the publishing of the POSIX Real-Time Profile, as well as the co-chair of the Ada Language Bindings Working Group. Hughes will continue the definition and refinement of the POSIX standards and is also heavily involved with the Avionics Division of SAE. As chair of the SAE AS-5B2 Operating System (OS) API Working Group, Hughes led the development of the requirements document which will be used for the SAE OS API standard. This was the basis for the requirements of the Delta Document.

Objectives: The next step in the process of standardizing the real-time military avionics API requirements is to implement the findings of the Delta Document. The following objectives needs to be accomplished:

Generate an Implementation Plan.

Take the findings from the Delta Document to the POSIX Working Group and get a consensus of the applicable requirements.

Identify a working group to specify the Ada bindings missing from the current POSIX standard.

Coordinate work with JSF to define an API for the avionics specific requirements.

Complete the review of the Distributed Communications Standard POSIX 1003.21 for deficiencies.

Review the four POSIX profiles to match the needs of military avionics and document deficiencies.

Support the efforts of the SAE OS-API Working Group.

Generate a functional requirements specification for using the Joint Technical Architecture (JTA) for the avionics domain.

Benefits: The results of this work can benefit military projects such as JSF, or any other project that is interested in reducing software life cycle costs by standardizing its APIs.

� PAGE �2�

