
 ITEA Journal: September/October 2001 (Volume 22, Number 3)

The Test and Evaluation Challenges of Following an Open
System Strategy

by

Cyrus H. Azani
Senior Systems Engineer

Information Technology and Systems Group
TRW Corporation

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 2

ABSTRACT

The open system strategy is an effective business and technical approach for maintaining
the superiority of the U.S. within growing constraints and an unprecedented rate of
technological change. By following an open system strategy in the acquisition of
systems, the government can better position itself to leverage private sector investments
made in commercial products, practices, and technologies to field superior capability
more quickly and affordably. This paper elaborates on distinctions between closed and
open systems and will discuss strategies for implementing open systems. The paper also
reviews and discusses the test and evaluation challenges associated with open systems
and proposes a number of critical developmental issues as a checklist to supplement the
information gathered by testers. The paper also emphasizes that the test of openness for
the interfaces within a system must only be done when operational and developmental
requirements either directly or indirectly require open system implementation and the use
of open standards for selected interfaces within a system. The paper also underscores that
the test of openness must only be initiated after careful review of testing issues and
challenges involved, and after it has been proven that the benefits of openness testing are
greater than the costs.

I. INTRODUCTION:

The 21st century is characterized by unprecedented change. Change is not simply
a possibility, or even a high probability, but a virtual certainty. Although ideological
differences will remain as a primary source for conflict with the third world, competition
for scares resources and markets will perhaps become the most dominant source of
conflict throughout the world. Proliferation of weapons of mass distraction and use of
information and biological warfare add new dimensions to evolving conflicts and pose a
continuing challenge to the United States. The benefits of Open Systems (OS) such as
more affordability, improved performance, and increased portability and interoperability,
would enhance the U.S. capability, shorten the length of engagement, and ensure the
mission success in light of evolving threats and technologies.

What is an Open System?

An open system is a system that can exchange energy, material and information with
its environment on a continuing basis. Such exchange is enabled through the use of open
(i.e., well defined, widely used and consensus based) standards, protocols, languages, and
data formats in developing systems. The focus of attention in an open system is on key
interfaces. An interface is designated as key interface when the technology turnover is
rapid and design risk is high on either side of the interface, and/or the system elements on
one or both sides of the interface exhibit a high failure rate or are very expensive. Use of
an open standard is the preferred method for implementing a key interface.

The key interfaces have a profound impact on:

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 3

 ability to add new capabilities through planned and unplanned incremental

improvements;
 capacity and flexibility to integrate entities and enable commonality, portability, and

interoperability;
 capability to replace items with high replacement frequency and cost.

The open systems concept originated in the biological sciences and then migrated

into physical and social sciences in the early parts of the 20th century. In the late 1960s
and early 1970s, the concept began to be applied in commercial information technology.
For many years, information systems buyers were limited to only a few major mainframe
vendors, with one vendor clearly dominant in the marketplace. Competition was severely
limited because a few –and sometimes one – vendor controlled access to the market. A
number of different standards organizations initiated open system efforts, sometimes in
competition with each other. Recently, some order was injected into the scene because of
more standardization and some degree of convergence appears reasonable.

Even though the open system concept has been used by the commercial sector for

sometime, it has only lately been embraced by the C4I and weapon system communities,
the most important entities and one of the biggest expenditure categories in the
Department of Defense (DoD). Bureaucratic structures and inflexible cultures are the
main reasons for slow application of OS within government institutions. Also, the
potential OS practitioners at DoD did not have access to a well-established body of
knowledge on OS and consequently were not able to determine the appropriateness of OS
to systems that are not defined as information systems. As a result, in 1994, the DoD
leadership chartered the Open Systems Joint Task Force to establish the needed body of
knowledge and promote the application of the OS in development and design of new
systems.

II. OPEN VERSUS CLOSED SYSTEMS

There are considerable differences between open and closed systems. The closed
system is characterized by closely held, privately owned standards, protocols, languages,
and data formats that are either unavailable to outsiders or are available only at a very
high license fee. Closed systems also include those that were designed by a single
company for a single program, or small number of programs. In contrast, an open system
is a system designed using a collection of interacting and integrated software, hardware
and human components that are based on consensus-based, de jure or if not available de
facto standards that are easily accessible to all interested parties. Table 1 summarizes the
major differences between closed and open systems.

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 4

Closed System Characteristics Open System Characteristics
Use of closely held, private interfaces,
languages, data formats and protocols
(government or vendor unique standards)

Use of publicly available and widely used
interfaces, languages, data formats and
protocols

critical importance is given to unique design
and implementation

critical importance is given to interfaces
management and widely used conventions

less emphasis on modularity heavy emphasis on modularity
vendor and technology dependency vendor and technology independence
minimization of the number of
implementations

minimization of the number of types of
interfaces

difficult and more costly integration easier and more cost effective integration
difficulty with portability, connectivity
interoperability and scalability

high degree of portability, connectivity,
interoperability, and scalability

use of sole-source vendor use of multiple vendors
expansion and upgrading usually requires
considerable time, money and effort

easier, quicker and less expensive
expansion and upgrading

higher total ownership cost lower total ownership cost
slower and more costly technology transfer technology transfer is faster and less costly
components, interfaces, standards, and
implementations are selected sequentially

components, interfaces, standards, and
implementations are selected interactively

systems with shorter life expectancy systems with longer life expectancy
use of individual company preferences to set
and maintain specifications

use of group consensus process to maintain
interface specifications

less adaptable to change in threats and
technologies

more adaptable to evolving threats and
technologies

focusing mostly on development cost and
meeting present mission

focusing on total costs of ownership,
sustainment, and growth

user as the producer of systems user as the consumer of components
rigid and slow system of influence and
control

real time and cybernetic system of influence
and control

adversarial relationship with prime
contractors/suppliers/vendors

Symbiotic relationship with prime
contractors/suppliers/vendors

mostly confined to traditional suppliers non-traditional suppliers can compete
simple conformance testing very challenging conformance testing

Table 1: Open versus Closed Systems

III. THE NEED FOR AN OPEN SYSTEM STRATEGY

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 5

A. What is an Open Systems Strategy?

An OS strategy is an integrated business approach and design method that relies
on sound systems engineering processes and continuing market research to evaluate
alternative concepts and if appropriate, develop systems architectures based on
modularity principles and well defined and widely used consensus-based interface
standards, protocols, languages, and data formats. An OS strategy is an effective enabler
for achieving rapid acquisition with demonstrated technology, evolutionary and
conventional development, interoperability, life-cycle supportability, and incremental
system upgrade without redesign of an entire system or large portions thereof. OS also
enables continued access to innovative technologies and products from multiple sources,
and prevents the buyers from being locked into proprietary technology.

An OS strategy is usually implemented by an Integrated Product Team (IPT)

which besides conducting market research also:

♦ Applies a disciplined systems engineering process that examines open versus
closed system tradeoffs;

♦ Defines key interfaces and establishes optimum level(s) of openness for the
system to be acquired/modernized and devises a strategy to achieve it;

♦ Develops modular open architectures that conforms to standards adopted by
recognized standards organizations, or when not effective, to de facto standards,
and;

♦ Ensures continued access to technological innovation supported by many
customers and a broad industrial base.

The OS strategy is an effective strategy for adapting to the current pattern of

change brought about by rapid technological advances and the pervasive globalization of
economies, markets, and conflicts. The new pattern of change has business and
engineering dimensions reinforcing each other and creating a paradigm shift greater than
the sum of its parts. By following an OS strategy, an organization will be in a better
position to reduce its total ownership costs in the following areas:

(1) Research and Development: At least some of the required subsystems or
components are likely to be readily available, or can be developed without
direct government investments;

(2) Production: There are multiple sources of supply to select from which may
also mitigate the problem associated with a diminishing defense dependent
manufacturing base;

(3) Operation and Support: The required level of openness shifts the burden of
continual improvement and repair to the supplier rather than the user of
products and technologies.

From an engineering perspective, by following an OS strategy an organization

establishes a flexible, modular, and open architecture, which will last longer and be
subject to less obsolescence. An important task undertaken in developing a standards-

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 6

based architecture is the selection of conventions (standards, protocols, languages, and
data formats). Performance, cost, security, privacy, long term availability and
supportability, upgrade potential, and openness are examples of criteria used for selecting
these conventions. Preference is always given to the use of open conventions first, then
de facto, and finally proprietary and government conventions. Chart 1 depicts the
preferred type of conventions (standards, protocols, language, and data formats) to use.

Figure 1 Preferred Conventions

B. Types of Open System Strategies

 Generally speaking, one can follow two strategies for designing and
implementing open systems, top-down and bottom-up. Traditional practice in the
development of systems has been to develop systems from the top down, where high
level requirements were analyzed, partitioned, and allocated to hardware and software
elements. The need to satisfy demanding performance requirements in harsh
environments usually led to unique and often proprietary designs. Taking advantage of
design from similar applications or commercial products was rarely practiced in the
development of systems. A top-down OS strategy (Figure 2) also applies top-down
system development approach but designs systems flexibly to take advantage of
commercial products and technologies.

 By following a top-down OS strategy, the organization establishes an overall
implementation/deployment plan for OS implementation, sets priorities for applications,
constitutes an enterprise-wide policy for development, and establishes a list of preferred
key interfaces that must remain open to enable exchange of information and products.
Appointment of a corporate champion to promote the concept, development of an

M
ar

ke
t A

cc
ep

ta
nc

e

Narrowly
 Used

Widely
Used

Non-Proprietary

Convention (Standard, Protocol, Language and Data Format) Type

Preferred ConventionsPreferred Conventions

Open Conventions
with Little Market
Support

Popular
Closed
Conventions

Popular
Open
Conventions

Proprietary

Closed Conventions
With Little Market
Support

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 7

enterprise level OS architecture and directing a detailed development and deployment
plan for implementation of OS are among other tasks associated with a top-down OS
strategy. The underlying assumption of a top-down OS strategy is that the corporate top
executives are in a better position to understand the business model, system of system
requirements, and the overall cost constraints.

Figure 2: Top-Down Open System Strategy

 The implementation of open systems through a top-down strategy may prove to
be more direct and efficient since policies, procedures and the selection of a particular
subsystem/component for transition originates from the corporate/enterprise level. This
approach integrates complex development efforts with uniformity and economy of scale,
but constrains rapid development and local innovation at the end-user level.

 Establishing and implementing the OS strategy from the top requires highly
technical expertise at the corporate headquarter, especially if the business entity is
comprised of many different subsystems operating in various environments. Often, the
technical expertise lies outside the corporate/enterprise level and thus the selection of the
OS champion becomes an insurmountable task for system/product level engineers and
managers to accept. Lower level engineers/managers may think that there is politics
involved with the open system mandates from the top. They may also believe that the
selected open standard, protocol, language, or data format may not be appropriate since
the subsystems/components have to adopt to architectures that are proposed by someone
else who may not be familiar with needs and constraints at the lower level.

A Top-Down Open System StrategyA Top-Down Open System Strategy
“Users Define”

A
cq

ui
sit

io
n

 S
tr

at
eg

y
C

or
po

ra
te

 S
tr

at
eg

y
T

ec
hn

ol
og

y
 S

tr
at

eg
y

Subsystem
Open

Architecture

The Blue Print
“Users & Industry Create”

(The building codes)

Operational
Architecture

Subsystem
(Component)
Architecture

Concept, Needs

 Subsystem/Component
Level

System
Open

architecture

System
(Product)

Architecture

Business Unit
(Product Line)
Architecture

Corporate
(Enterprise)
Architecture

Business Unit
Open

Architecture

Enterprise
Open

Architecture

 System/Product Level

 Business Unit/Product
 Line Level

 Corporate/Enterprise
Level

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 8

 To overcome the above-mentioned drawbacks of a top-down strategy, an
organization may follow a bottom-up OS strategy that relies on inputs and wisdom at the
lower level to develop and deploy open systems throughout the organization. Figure 3
depicts the upward flow of information in a bottom-up OS strategy.

Figure 3: Bottom-up Open System Strategy

 A bottom-up strategy for implementing OS is usually initiated from the
people/programs at the lower end of the organizational hierarchy. The driving force for
adoption of an open system strategy is common sense and an immediate-felt need by
experienced system engineers. They want to develop a viable and life-long system and be
able to upgrade the system, as new technologies become available. They use COTS
software or hardware to reduce the overall development cost and want to take advantage
of competition to get the best value for their organization. So in the absence of mandates
from the top, they initiate OS feasibility studies and begin to use widely supported and
well-established standards for selected interfaces within the system. As the benefits of
using open systems are realized, the lessons will then be shared with other
programs/systems both laterally and vertically which will result in application of open
systems in other places in the organization. With this strategy, the OS benefits such as
reduction in the overall cost, higher conformity, better system of systems interoperability
and commonality/reuse may not be realized in a timely fashion.

 Bottom- up OS strategies may be proven to be more robust than top-down
strategies, especially if the architects/engineers possess sound systems engineering skills

A Bottom-Up Open System StrategyA Bottom-Up Open System Strategy
“Users Define”

A
cq

ui
sit

io
n

 S
tr

at
eg

y
C

or
po

ra
te

 S
tr

at
eg

y
T

ec
hn

ol
og

y
 S

tr
at

eg
y

Subsystem
Open

Architecture

The Blue Print
“Users & Industry Create”

(The building codes)

Operational
Architecture

Subsystem
(Component)
Architecture

Concept, Needs

 Subsystem/Component
Level

System
Open

architecture

System
(Product)

Architecture

Business Unit
(Product Line)
Architecture

Corporate
(Enterprise)
Architecture

Business Unit
Open

Architecture

Enterprise
Open

Architecture

 System/Product Level

 Business Unit/Product
 Line Level

 Corporate/Enterprise
Level

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 9

and adequate understanding of the OS concept. A bottom-up approach encourages rapid
and innovative development of open architectures at the subsystem or user level. The
engineers/architects who work at these levels have a better understanding of the technical
requirements and what works or doesn't work within their subsystem. While fast and
effective for users, this approach leads to duplication of effort and lack of uniformity
among similar subsystems, compromising cost-efficiency. Moreover, the
subsystem/component level implementers may lack a broader understanding of the
mission, overall cost constraints, and the required system of system interoperability.

 By following common sense and sound systems engineering principles, one soon
recognize the need to follow a balanced OS strategy. Such a strategy is built upon the
advantages of both a top-down and a bottom-up strategy. Inputs from the lower levels as
well as from the suppliers and customers are gathered and analyzed to create a shared OS
vision and a well-thought deployment plan for the organization. A balanced OS strategy
will take advantage of prior lessons learned and will establish organization-wide policies
and processes to implement open systems. Figure 4 shows the upward and downward
flow of information in a balanced OS strategy.

Figure 4: Balanced Open System Strategy

IV. TESTING OF OPENNESS

Test and evaluation of an open system is usually conducted for two purposes – discovery
during system development, and confirmation of system performance after development.
Through discovery testing one will ensure that a program office, during the system

A Balanced Open System StrategyA Balanced Open System Strategy
“Users Define”

A
cq

ui
sit

io
n

 S
tr

at
eg

y
C

or
po

ra
te

 S
tr

at
eg

y
T

ec
hn

ol
og

y
 S

tr
at

eg
y

Subsystem
Open

Architecture

The Blue Print
“Users & Industry Create”

(The building codes)

Operational
Architecture

Subsystem
(Component)
Architecture

Concept, Needs

 Subsystem/Component
Level

System
Open

architecture

System
(Product)

Architecture

Business Unit
(Product Line)
Architecture

Corporate
(Enterprise)
Architecture

Business Unit
Open

Architecture

Enterprise
Open

Architecture

 System/Product Level

 Business Unit/Product
 Line Level

 Corporate/Enterprise
Level

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 10

development and design phase has indeed considered the OS strategy, and open system is
in fact a viable strategy to pursue. If the viability of an OS strategy is proven during the
development phase, one then needs to use confirmation testing to test the conformance
to a particular open standard, and validate the openness of key interfaces to ensure
present/future performance. Both of these tests are important for achieving the full
benefits of open systems. Figure 5 shows the different types of tests that comprise the test
of openness.

The OS strategy is not an appropriate strategy to use in all kinds of systems. Blindly
forcing open standards, protocols, languages, and data formats and mandating openness
testing can seriously impact the performance and increase the cost. As a rule, the benefits
of discovery and confirmation tests must be always assessed against the costs of doing so,
and only when the benefits are greater than the costs should one proceed with testing.
Testing of openness is a very challenging and expensive task. There are no specialized
test labs that can test the openness of a system and test suits for validating or verifying
the conformance with interface standards, protocols, and data formats are at best scarce
and very expensive. Only by exercising sound systems engineering practices and by
making a strong business case can one reach an appropriate decision as to whether any
type of discovery or confirmation testing is needed.

Figure 5: Different Types of Openness Testing

Viability Testing
(Is open system a viable strategy?)

Conformance Testing
(Has a particular standard being used?)

Field Testing
Pilot Studies and
Demonstrations

Verification Testing
(Has a program properly considered an OS strategy?)

TEST OF OPENNESS

Validation Testing
(Is a particular key interface open?)

Do we have access to multiple sources?
Could we insert a new technology?
Can we exchange information?
Are we attaining portability/commonality?

Discovery Testing
Is open system a viable strategy and

has it been properly considered?

Confirmation Testing
Are the key interface really open? (Are we getting

the open system benefits planned for?)

Compliance Testing

(Are the new products
compatible with the
existing products?)

Integration
Testing

(Are the new products compliant
to a particular Interface standard?)

Viability Testing
(Is open system a viable strategy?)

Viability Testing
(Is open system a viable strategy?)

Conformance Testing
(Has a particular standard being used?)
Conformance Testing
(Has a particular standard being used?)
Conformance Testing
(Has a particular standard being used?)

Field Testing
Pilot Studies and
Demonstrations

Verification Testing
(Has a program properly considered an OS strategy?)

Verification Testing
(Has a program properly considered an OS strategy?)

TEST OF OPENNESSTEST OF OPENNESS

Validation Testing
(Is a particular key interface open?)

Do we have access to multiple sources?
Could we insert a new technology?
Can we exchange information?
Are we attaining portability/commonality?

Discovery Testing
Is open system a viable strategy and

has it been properly considered?

Confirmation Testing
Are the key interface really open? (Are we getting

the open system benefits planned for?)

Compliance Testing

(Are the new products
compatible with the
existing products?)

Integration
Testing

(Are the new products compliant
to a particular Interface standard?)

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 11

A. Operational/Performance Conditions that Call for Openness

Before rushing to implement open systems and conduct discovery or confirmation
tests, we must ensure that the operational or developmental requirements directly or at
least indirectly call for openness of a system, subsystem, component, or a particular key
interface. The following conditions and operational/performance requirements may call
for application of an OS acquisition strategy:

a. Whenever there is a need to specify operational requirements in an incremental

manner over time, matched with time-phased threat assessments and available
technology, an open systems design will be appropriate for providing the needed
flexibility.

b. When the nature of the threat is unknown, its magnitude constantly changes, and the
technology is not proven, the portability, scalability, and adaptability associated with
an open systems design will be of great help.

c. When the main emphasis is on long-term sustainment and affordability, or
affordability is the basis for fostering greater program stability. These requirements
may call for optimizing cost-effective commonality of hardware, software, and
support systems, simplifying sustainment, and reducing the total cost of ownership. In
some cases, supportability is a performance requirement that relates to a system’s
operational effectiveness, operational suitability, and life cycle cost reduction. An OS
design enables access to commercial products from multiple suppliers and as a result
will diminish the need for large depot and personnel needed to keep track of an
obsolete inventory of proprietary spare parts.

d. Capability to quickly reconfigure forces and systems. High dependence upon rapid
and collaborative responses with distinct ad hoc forces will be more economically
and effectively realized by plug and play capability of open architectures. Moreover,
the ability to constitute and readily integrate functionally compatible entities and
systems is greatly facilitated by architectures and standards that are truly compatible.

e. Need for seamless, high speed, digital information exchange among diverse
entities/elements. These requirements demand joint and combined operations over
multiple and diverse hardware and software components and communication
networks, and as such are more effectively fulfilled by application of open
architectures. The cost of integration, interoperability, and modernization will more
likely increase if the key hardware and software interfaces in a digitized battlefield
environment are not defined by open standards.

f. Ability to receive and disseminate commands and controls data in real time. There
will most likely be adverse impact on performance, future upgrades and total
ownership costs if real time command and control systems are designed based on
proprietary protocols and standards.

g. Need for creation of overarching capabilities for a mission area to take advantage of
system of systems or family of systems benefits. When similar open interface
standards are applied across a family of systems or a product line, commonality and
reuse of components become possible and interoperability is facilitated.

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 12

h. Need for reprogramming of software modules and communication networks. Open
systems will enable software reuse and increase the flexibility for reconfiguring the
communication networks.

i. Application of an integrated approach for adding and facilitating the incorporation of
future capabilities or advanced technologies with minimum impact on existing
systems. Requirements that call for integrated and modular communications and
navigation capability are more effectively fulfilled by standardization of interfaces.

j. Requirements that are defined in terms that enable and encourage the use of
commercial and non-developmental item equipment, or call for minimizing the risks
associated with being captive to specific products or sources.

k. Requirements that call for future growth capabilities and performance characteristics
that will be highly dependent on continuous use of emerging technologies in
computer, communication, surveillance, and navigation technologies.

l. Requirements that call for interoperable solutions and development of architectures
that must comply with predefined standards. Such requirements may demand
interoperability across platforms and among subsystems, and may necessitate
interoperability and commonality of components/systems that are similar in function
to other programs.

m. Requirements that call for application of modular, reusable, portable, extensible, and
non-proprietary software.

B. Test and Evaluation Challenges

As mentioned earlier, openness testing is a very challenging and expensive task that must
be done if the requirements specifically call for the use of OS and the benefits of doing so
are greater than the costs. Several challenges emerge when dealing with test and
evaluation issues corresponding to open systems. The following questions may be asked
in regard to test and evaluation of open systems:

1. Could the openness of a system be tested? The answer in most cases is negative

because no one is likely to know how much “openness” is needed in a system to
make it an open system. Moreover, increased openness may not be necessarily better.
For example, a 100% open system is not practical and may not be better than a
system, which uses open standards for 50% of its interfaces. Moreover, every system
is unique and there is no effective index that one can use as a metric to measure the
degree or the extent of openness of a system.

2. Should we verify the openness during the development and design or after the
deployment? If a strong case is made for design of an open system we definitely need
to confirm that the selected interfaces are in fact open before we deploy the system.
These tests must be done again during planned upgrades to ensure that new COTS are
complying with the selected standards and will not negatively affect overall system
performance.

3. How do we verify that a key interface is open at a particular level within a system? In
most cases we should be able to verify the openness of an interface or the application
of specific open standards for key interfaces within a system. This type of testing is
currently being done for connectivity and interoperability testing purposes.

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 13

Unfortunately, the test labs that specialize in performing such tests and certifying the
use of certain standards are very scarce. Enormous costs of establishing such facilities
and lack of human expertise to operate them prohibit the widespread use of these
labs. Moreover, the current labs have not developed the test suite needed to test all
kinds of interface standards, especially the emerging ones.

4. Do we need to test the previously certified products? As mentioned earlier, a
product's conformance to a standard is more complicated by ambiguities inherent in
any language, by products that either barely meet the standard or performance in the
upper end of the tolerance range, or products that have extensions to make themselves
more attractive in a market. In most cases, the previously certified products such as
COTS, government-off-the-shelf (GOTS), front end processors, modems, and radios
do not need to be retested in and of themselves, as they most probably have already
been certified. But, if these products must effectively interface with existing products
developed by different vendors, or the performance of the system is likely to be
degraded because of extensions to standards, we may have no choice but to at least
perform compatibility testing.

5. Is it enough to rely only on test certifications from contractors/suppliers, or do we
still need to validate/verify their compliance? In most cases, it is a normal way of
doing business for a client to refuse contractor assurances and go to some
independent consultants/test facilities to validate the claims made by them regarding
the openness of an interface. The need for independent test/conformance certification
could become a requirement in contracting documents such as a Request For
Proposal. Independent verification may become more necessary if most of the
benefits from using an open interface standard will be realized in the long run.

6. Is it better to evaluate a system to verify the achievement of OS benefits rather than
test compliance with specific interface standards? This is a preferred – and difficult -
evaluation method. It requires a controlled environment for testing to ensure that the
benefits gained are being achieved only from using open systems. Creating a
controlled environment is very challenging.

7. What about evaluating a program to verify its compliance with the application of a
written process or procedure for implementing an OS strategy? For example, whether
or nor a program has done a comprehensive study to assess the feasibility of using
open systems or has done extensive market research to identify and evaluate open
standards, etc. This is perhaps the least costly approach but its focus is on the process
rather than the outcome. It assumes that we already have a “best business practice
process” for implementing open systems as a benchmark to compare the subject
process with it and reach effective conclusions. In the absence of a benchmark
process we may at best rely on a list of developmental effectiveness and suitability
issues (not parameters, objectives or thresholds) that we could use as a supplement to
other needed developmental test and evaluation efforts. The collective responses to
the relevant questions asked regarding these issues might then help us to make a
better educated guess about whether or not a system will be open when it is fielded.

C. Critical Developmental Issues

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 14

 Due to lack of tools and inability to measure systems openness, a number of “critical
developmental issues” are recommended as a checklist for testers to ensure compliance
with open systems policies. Critical developmental issues are defined as developmental
effectiveness and suitability issues (not parameters, objectives or thresholds) that must be
examined in developmental test and evaluation to evaluate or assess the degree to which
a program has considered an OS strategy and the key interfaces within a system are open.

 Following are examples of critical developmental issues that can be used as a
checklist to supplement the other types of information gathered by the testers:

a) Has the Program Manager (PM) assessed the feasibility of using widely supported
commercial interface standards in developing systems?

b) Has the technical and operational concepts that directly or indirectly call for use
of an open system strategy been properly evaluated?

c) To what extent have OS requirements been fed into the acquisition process?
d) Is open systems strategy an integral component of the overall program acquisition

strategy for enabling rapid acquisition with demonstrated technology,
evolutionary and conventional development, interoperability, life-cycle
supportability, and incremental system upgrade without redesign of entire system
or large portions thereof?

e) What approach has the PM used to enable continued access to cutting edge
technologies and products, and to prevent being locked into proprietary
technology?

f) Has the PM documented his approach for using open systems and included a
summary of his approach as a component of his overall acquisition strategy?

g) Does the program have a documented process or procedure for implementing an
OS strategy? Does the process or procedure explain how the program plans to use
the OS strategy as an enabler to achieve predetermined OS related objectives in
its acquisition strategy? For example, whether or not a program uses an OS
strategy to mitigate the risked associated with obsolescence, dependency on a
single source of supply, and proprietary technology. Also, the extent to which a
system is capable to quickly and affordably interconnect with and be assembled
into existing platforms and systems as needed.

h) Are there any requirements to test and certify systems/products?
i) Is the PM using a modular standards-based architecture in designing systems or

families of systems?
j) Does the program have a system architecture description that is traceable to an

open systems architecture requirement in the Operational Requirements
Document (ORD)?

k) Is the system architecture traceable to a functional reference model for a specific
platform/domain?

l) At what level(s) is the architecture for the system defined by open interfaces?
How were these levels of the architecture chosen?

m) What level of modularity has been employed for the system? Does functional
modularity align with physical modularity to permit easier technology insertion?

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 15

n) Have key subsystems or components and their interfaces been identified? Are the
identified key interfaces adequately defined? What percent of key interfaces are
defined by open standards?

o) What type of standards (consensus, de facto, or proprietary), were used to define
key interfaces?

p) What criteria has the PM used to select the interface standards?
q) To what extent are selected interface standards widely supported and publicly

available?
r) Has the PM provided sufficient justification for using proprietary interface

standards for the selected key interfaces?
s) Are there a large number of suppliers that provide products compliant with the

selected interfaces? Does market research support the selection of interfaces?
t) Does the program use standards that are common to its specific systems

domain/platform?
u) Has the program specified any options or extensions to the interface standards?

Do these options prevent using similar components available from other programs
or from the commercial sector?

v) Does the program have a conformance management plan to document the use of
standards?

There are also a number of critical supplemental questions related to the above-
mentioned issues that the test and development communities should answer before
conducting discovery and confirmation tests. They are:

1. Has the test and evaluation community been a member of the Integrated product
and Process Development team responsible for considering and implementing the
OS strategy?

2. Has the test and evaluation community developed and analyzed OS testing
methodologies in light of the above mentioned challenges and critical
developmental issues?

3. Is there an appropriate test and evaluation method available for testing the
conformance to selected open standards?

4. Is the test and evaluation community assessing the OS related technical or
operational performance under the realistic conditions of interrelated or
interacting systems?

5. Have areas of concern in testing and certification been identified and the findings
been properly reported to appropriate developmental and operational testing
organizations (e.g., the Operational Test Readiness Review)? Does the report
delineate which interfaces worked and which had limitations, were not tested, or
did not work?

V. CONCLUSION:

An open system strategy leverages commercial products and practices to make
systems more interoperable and adaptable to evolutionary changes in operational

The Test and Evaluation Challenges of following an Open System Strategy by Cyrus H. Azani

 ITEA Journal: September/October 2001 (Volume 22, Number 3) 16

requirements and emerging technology, and extends the life span of a system. A closed
system strategy is one that uses privately held, proprietary standards and specifications
that are not accessible to any but a single vendor, or a small group of favored vendors.
By using an OS strategy, program managers can use widely available open systems-
based commercial and non-developmental items/products rather than deal with products
of proprietary technologies, standards, and specifications. Consequently, interoperability
will be enhanced and system upgrades can be accomplished faster and cheaper because a
standards-based architecture facilitates information exchange and incremental
technology insertion rather than large-scale system redesign.

An effective OS design must apply open standards, protocols, languages, and data

formats in developing systems and ensure adequate conformance to such conventions.
Open standards, protocols, languages and data formats are those adopted by recognized
standardization organizations and widely supported by the commercial market place.
Validation of openness and ensuring interoperability could be costly and complex. There
are challenges and issues that we need to be aware of. As a rule, the benefits of
gathering data and conducting the test must always be greater than its costs. Finally, an
OS strategy is not appropriate to all systems and by blindly forcing open standards,
protocols, languages, and data formats and mandating discovery and confirmation
testing we may negatively impact performance and increase costs.

References

Azani, Cyrus H. “Joint Space Operations via Secured Integrated Network of Modular
Open Architectures.” Proceedings of the Joint Aerospace Weapons Systems Support,
Sensors, and Simulation Symposium and Exhibition, 23-27 July 2001, San Diego,
California.

Azani, Cyrus H. “Discovery and Confirmation Testing of Open Architectures.”
Proceedings of the International Test and Evaluation Association Workshop, August 6-9,
2001, Boston Massachusetts

Azani, Cyrus H. “The Open Systems Strategy: A Viable Business and Engineering
Approach for Building And Sustaining Advanced Complex Systems.” Proceedings of the
Defense Manufacturing Conference, November 26-28, 2000, Tampa Florida

National Research Council, "Aging Avionics in Military Aircraft." National Academy
Press, Washington, D.C. May 11, 2001

