


 Decision under uncertainty, time constrains, and 
increasing complexity
› Implications
› Uncertainty
 Drivers, types, and some causes
 Decision under uncertainty

 Trust in Automation
› Reliance, reliability, and trust
› Building trust in human-synthetic systems
 Modeling the interaction between WL, SA-SU, DE
 For the agents SA-SU of human performance
 In-turn human trust of agent behavior

 Architectures that include trust factors
 Finite State Machine Induction

 Summary



 Today, often the human understanding of the state 
of the system must be achieved under greater time 
constraints. 

 Combined with increased complexity in networks 
requires improved technologies for understanding 
and controlling complex system behaviors. 

 Improvements are needed now at the interface 
between human understanding of system state
and machine understanding of system state

 Inclusive of the human cognitive state (Raj, Doyle, 

Cameron, 2010)



 Lack of good probabilistic knowledge
 Lack of information
 Lack of situation awareness/understanding 
 Differences in opinion
 Misdiagnosis (diagnostic uncertainty)
 Recollection of hypotheses ( cause for 

propagation)
 Acceptance/rejection of hypothesis
 Selection of goal
 Selection of means to achieve a goal
 Execution of Means



 Stochastic (inherent)
› Due to variability in system design or the 

environment
 Creates random outcomes

 Statistical
› Incompleteness of data; small sample size

 Modeling 
› Resulting from the simplification of nature
 Large number of assumptions are made during 

modeling
 Fidelity

 Often unequal between agent and human
 Not matched to needed level of fidelity



 Design uncertainty
› Two distinct classes of design parameters emerge: 

 Control parameters 
 Items that the designer has direct control over

 Noise parameters
 Effect the design; yet beyond the control of the designer

 Situations and systems are non-deterministic
 Leading to an inability to analytically predict and engineer the 

outcome of an event, or the exact value of a parameter 
 Inability to create deterministic system states 

 Operational uncertainty 
› Arises as a result of what are often called noise parameters that affect 

the performance of a system. 

“There are many distinctions between different types of uncertainty and ways of looking at 
uncertainty. The most important result of including uncertainties in a (risk) calculation, 
like the result of making the (risk) calculation itself, is not the number, but the insight that 
the inclusion gives to the assessor.” (Marvis, 1998)



 A positive correlation exists between 
sensitivity to risk and sensitivity too 
uncertainty. 
› The higher the [perceived] risk, the more 

uncertain operators become (Fox and See, 2003). 

 Monitor perceived risk  (Elise Payzan Le Nestour and Peter Bossaerts)

 Irreducible uncertainty (Risk)
 Estimation Uncertainty
 Unexpected Uncertainty



 Forces assumptions about the nature, intentions and methods 
of elements in the environment (Chickering & Heckerman, 1996). 

 If all elements behaved rationally and predictably 
 One could regain SA
 Infer likely system behavior Performance, and future state changes 

 Maximizing one’s gain and/or minimizing losses depending on 
the conditions.

 Experience and historical knowledge can substitute for the 
missing information
› Recognition of patterns
› Trends
› Analogical reasoning
› Case-based inference

› Evidential deductions (Cooper, 1995; Dagum & Chavez, 1993). 



 Willingness to act under uncertainty 
› Governed by perceived likelihood of favorable 

outcome
› Attractiveness of potential consequences 
› Dependent upon the degree of uncertainty 

concerning probabilistic information 
 Attractiveness of a prospective outcome generally 

decreases as ambiguity or vagueness increase 
(Ellsberg, 1961;2001). 



 Appropriate trust in and reliance upon automation 
is critical for safe  and efficient operation (Gao and Lee, 
2006). 

› A lack of trust in automation increases workload and decreases 
situation awareness because operators more closely supervise 
the system rather than the situation (Cummings & Mitchell, 2008). 

› Operators willingness so rely on automation impacts mission 
effectiveness. 

 Obtaining optimal performance from an 
autonomous robot system requires good teamwork 
between the operator and the robot. Trust is an 
essential part of teamwork. 
(Desai, Drury, and Yanco,  2008). 



 Automation is “the 
technology that actively 
selects data, transforms 
information, makes 
decisions, or controls 
processes.” (Lee and See, 2004) 

 Trust is “the attitude that an 
agent will help achieve an 
individual’s goals in a 
situation characterized by 
uncertainty and 
vulnerability.” 

Trust Relationships (Cring and Lenfestey, 2009)



 Trust ≈ reliance when the 
operator has no choice

 Trust < capabilities an 
inappropriate reliance 
develops  (Lee and See, 2004).

 Low levels of trust: Disuse
› User distrust may lead to a 

‘fight’ for control (Bruemmer, 2004)

 Errors of commission. 

 High levels of trust create 
over reliance

 Errors of omission



 Trust 
› Can be difficult to achieve and maintain
› Easy to lose
› Difficult to recover 
› Trust is easier to build in human-human 

interactions than in human-automation/ 
synthetic agent interactions. 
 Why? 
 Humans when interacting with humans build trust 

through shared mental models of the world,  a 
common knowledge base, similar goals,  common 
motivating factors, time vested, and reliance. 



 Create dependable and predictable 
systems. 
› Increase reliability and fault-tolerance (Few, 2004). 
 However, understanding robot actions and intentions 

may be more important than robot reliability or 
performance (Bruemmer, 2004).

 Synthetic systems need to provide status 
› Explain its own behavior

 Robot-Human communication etiquette 
improves trust
› System should ask for help when needed (Yanco, 2004).

 Structured task environments increases trust, 
cooperation, and performance. 



 “The ability to recognize patterns of 
operator behavior that could lead to 
poor outcomes is critical to monitoring 
the overall performance of the human-
unmanned system team.” 

 “Recognizing the onset of abnormal behaviors 
[non-optimal cognitive states], …allows for 
detection and prediction of the occurrence of 
potential critical events.” (Boussemart and Cummings 
, 2009) 



 “By addressing operator trust explicitly 
during architecture development, 
system designers can incorporate more 
effective automation.” (Cring and Lenfestey, 2009)

 To be effective, automation must be well-
designed, reliable, and tailored to 
complement the capabilities of the human 
operator in varying supervisory roles (Cummings, 
Bruni, Mercier, & Mitchell, 2007; Cummings & Mitchell, 2008). 









 Through the use of psychophysiological 
measures the agent is provided a window 
into the human operator’s mental state

 Level of cognitive workload
 Level of attention
 Level of frustration
 Perceived Risk/Uncertainty/Trust*

 Agents can use this information to adapt 
itself to the needs of the user ( i.e., adaptive 
automation/robotics).

 Robots can scale their own level of 
autonomy to support different levels of user 
trust (Swinson, 2004).



 Because situation awareness situation 
understanding and optimal levels of 
workload supports effective decision 
making  and can inform synthetic agents  
about human performance
› the upper and lower limits where the correlation 

between WL and SA-SU transitions from positive 
to negative and begins to negatively impact 
situation awareness, is sought. 



Figure 1: WL and WL associated 
with gaining SA-SU compete for 
limited mental capacity and interact. 

Figure 2: illustrates the concept that 
DE is usually dependent on SA-SU 
and also competes for limited 
resources. 

Figure 3: DE competes with SA-SU 
and task related WL for cognitive 
capacity. 

Figure 4: SA-SU, and DE interact 
with WL and create an optimal 
cognitive state that utilizes workload 
appropriately, supports sufficient SA-
SU, which in turn supports DE. 
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Demonstrates that when WL, SA-SU, and DE are within the upper and lower limits and 
workload decreases, freeing up cognitive reserve, then both SA-SU and DE increase. This 
crossover within the upper and lower limits is considered the optimal state. The concept 
follows these rules: a) when WL starts within the upper and lower limits (UL/LL), then when 
WL increases, SA-SU and DE increase, b) when WL goes above the UL, SA-SU and DE 
decrease, c) when WL falls below the LL, SA-SU and DE are less than WL, d) when WL, 
SA-SU, and DE are within the UL/LL and WL decreases, SA-SU and DE will increase 
creating an optimal cognitive state supporting SA and DE, e) demonstrates that on 
occasion even though WL is above the UL and SA-SU are decreased, effective decisions 
can sometimes still be made (Doyle, 2008; Raj, Doyle, and Cameron, 2010). 



 Predict the next type of operator behaviors 

 Monitor operator behaviors and detect 
deviations from the expected norm. 
› Deviations (abnormal behaviors )which could 

eventually lead to human error. 

 FSM used as a monitoring tool for human 
behavior but could also be used for 
human/ synthetic agent team behavior as 
well.



 Manage probabilities to identify stochastic connections 
between actions and consequences

 Overall, the data fusion approach for SA could benefit from 
both evolutionary game models estimating state 
determinations and solutions of the mappings between the 
state space and the representation hypotheses

 Classical neural net and Bayesian classifier “black box” 
methods, however, suffer from two problems
› They often fail to accurately predict cognitive state when the 

context of the task changes significantly
› They produce cryptic, difficult to interpret models.
› Dimensionality reduction methods such as principal components 

analysis (PCA) or independent components analysis (ICA) 
express data more compactly, but they do not provide much 
insight into the data’s underlying structure, particularly its time-
varying structure.



 Statistical techniques have shown the feasibility of classifying a 
person’s overall cognitive state into a small number of categories 
from EEG data (Koska et al., 1997; Schmorrow & Stanney, 2009; Trejo et al., 2003)

› However,  classification performance suffers dramatically when 
the data comes from a future point in time where the 
operational context or environment has changed (Berka, et al., 2004; 
Lan, et al., 2005).

› Understanding and modeling the EEG signal (or SA, workload, 
etc. ) as a collection of independent components, where some 
components vary with external stimuli and others vary with 
internal cognitive states, would improve model performance. 
 The data signatures of these separate components vary with time, 

even with the time frame of a single task, which makes them difficult 
to identify. 

 Learning algorithms that assume a stationary distribution cannot 
handle constantly shifting sensory signals. 



 Because brain activity associated with processing 
external stimuli does not remain stationary over 
time, traditional statistical methods assuming a 
stationary process can fail. 

 While HMM do not assume a stationary process
› Accuracy depends on  the model designer correctly specifying 

the spatial and temporal structure of the underlying process 
generating the data

 FSM induction, however, models a 
multidimensional data stream as a collection of 
independent, time-varying components with 
computational efficiency while learning patterns in 
the data (Hong, Turk & Huang, 2000).



 FSM induction can explicitly represent 
the modeling process and structure 
visually and in real-time to enhance 
understanding of the underlying process.

 The model produces an internal 
representation, or “memory”, by
› Segmenting the time-varying signal in terms 

of the signal's most frequently occurring parts
› Detecting temporal relationships between 

those parts, which may or may not share the 
same set of spatial variables. 



 Similar to data compression, individual neuron-like 
processing elements come to represent the most 
frequent components within a signal. 

 FSM induction can quickly partition a 
multidimensional signal with many variables into 
groups of correlated variables without any prior 
information about variable relationships. 
 If the signal represents a collection of independently 

evolving state trajectories, the algorithm learns to track 
each trajectory in the group. 

 FSM models can continue tracking changes in cognitive 
state despite changes in the sensory environment because 
it can decompose a signal into familiar and unfamiliar 
parts. 



 The FSM approach has the potential to model 
brain activity, (i.e., SA, workload etc.) as a 
collection of weakly dependent, stochastic 
processes 
 Where one or more processes correspond to the socio-

technical team internal cognitive state, and other 
processes map to sensory processing or noise in the signal. 

 By basing the probability of future events on the 
occurrence of prior events without imposing a limit on how 
far in the past the prior events have occurred, it can model 
non-Markov processes such as operator and system 
cognitive state (Raj et al., 2009). 

 The FSM can remain robust to physiologic perturbations in 
the system and continue to improve its underlying model 
over time using new data, as it does not require a closed 
training set for operation. 



 Chaotic transitions likely emerge in a wide 
variety of cognitive phenomena (Bob et al, 
2006). 
› Nonlinear observers can improve FSM models of 

dynamic socio-technical systems by identifying 
and tracking chaotic attractors corresponding 
to different mental states automatically. 
 Estimate the state of a nonlinear system
 Identify mismatches (anomalies) between the model 

and the actual system.
 Sliding mode variable structure observers (VSOs) can 

identify chaotic attractors in the data and augment the 
FSM of a given model by providing a longer-term 
memory of anomalous events and structural changes in 
the underlying system (Drakunov, 1984, 1992; Drakunov & Utkin, 1995). 



 VSOs can update the model when they detect an 
anomaly
› Which then becomes a known pattern
› Thus creating a change in the model structure. 
› This property allows reconstructing/estimating categories 

of cognitive state that can arise in different situations, such 
as stress, surprise, uncertainty, etc

 An adaptive automation system that combines 
FSM and VSO methods could identify natural 
variations in human-generated actions and data 
from background noise, as well as identify 
infrequent events and shifts in the structure of the 
system. 



 Human Synthetic agent trust is critical to safe operation and 
mission effectiveness

 Increases in risk / uncertainty decreases  trust
 Trust in human synthetic agent interaction is different than 

human-human interactions
 Synthetic agents must ask for help and acknowledge 

commands
 Adapt to human level of understanding and current 

willingness to trust in the agents capability
 Synthetic agents should be able to predict patterns in 

human behavior
 Perhaps, architectures that include trust factors,  adaptive 

automation, and FSM techniques might bridge the symbiotic 
relationship gaps that exist in human agent/automated 
agent interactions today.
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