Agenda

• Discuss DASD(SE) efforts and mission

• Review key events and actions from the last year

• Q&A
Some Context Up Front: Key Elements of Defense Strategic Guidance

- The military will be smaller and leaner, but it will be agile, flexible, ready and technologically advanced.

- Rebalance our global posture and presence to emphasize Asia-Pacific and the Middle East.

- Build innovative partnerships and strengthen key alliances and partnerships elsewhere in the world.

- Ensure that we can quickly confront and defeat aggression from any adversary – anytime, anywhere.

- Protect and prioritize key investments in technology and new capabilities, as well as our capacity to grow, adapt and mobilize as needed.
Our Mission:
- Protect our National Security
- Provide the military forces needed to deter war and prevail in conflict

Over 1.4 million active duty men and women
Over 1.1 million Guard & Reserves
Over 718,000 civilians
DoD Engineering Enterprise

World’s Largest Engineering Organization

Over 99,000 Uniformed and Civilian Engineers

Over 39,000 Acquisition Corps Certified Systems Engineers (SPRDE)
Engineering (Non-Construction) Functional Community
Acquisition Engineers

SPRDE-SE/PSE
Total = 39,561

SPRDE-SE/PSE
Eng (Non-Con) FC = 30,013

SPRDE-SE/PSE
Other FC = 9,548

PQM
Total = 9,410
Eng (Non-Con) = 1,166
Other FC = 8,244

ACQUISITION
41,761¹

NON-ACQUISITION
33,162

Total = 74,923¹*

Notes:
1. Does not include 0801A Acquisition Program Management Function

Sources:
*DCPDS, June 30, 2012
Defense Acquisition Workforce Data Mart, June 30, 2012

¹DCPDS, June 30, 2012
DASD (Systems Engineering) Mission

Develop and grow the Systems Engineering capability of the Department of Defense – through engineering policy, continuous engagement with component Systems Engineering organizations and through substantive technical engagement throughout the acquisition life cycle with major and selected acquisition programs.

A Robust Systems Engineering Capability Across the Department Requires Attention to Policy, People and Practice

We apply best engineering practices to:

- Support and advocate for DoD Component initiatives
- Help program managers identify and mitigate risks
- Shape technical planning and management
- Provide technical insight to OSD stakeholders
- Identify systemic issues for resolution above the program level
DASD, Systems Engineering

Stephen Welby
Principal Deputy
Kristen Baldwin

Mission Assurance
Nicholas Torelli

Major Program Support
James Thompson

DASD, Systems Engineering
Analysis of Complex Systems/Systems of Systems
Program Protection/Acquisition Cyber Security
University and Industry Engineering Research
Modeling and Simulation
Systems Engineering FFRDC Oversight

Addressing Emerging Challenges on the Frontiers of Systems Engineering
Supporting USD(AT&L) Decisions with Independent Engineering Expertise
Leading Systems Engineering Practice in DoD and Industry

Providing technical support and systems engineering leadership and oversight to USD(AT&L) in support of planned and ongoing acquisition programs

DoD SE Update 2012
10/16/2012 | Page 8

DISTRIBUTION STATEMENT A -- Approved for public release by OSR on 10 OCT 12; SR Case # 13-S-0071 applies
Program Engagement

- Engineering Assessment / Mentoring of Major Defense Programs
- Technical Reviews
- AT&L Decision Forums
- Systems Engineering Plans
- Systemic Root Cause Analysis
- Support Acquisition Leadership with Independent Engineering Analysis and Advice

Our Focus: Supporting Knowledge-Based Decision Making
Policy and Practice

• Supporting the Current Practice
 – Department-wide Systems Engineering Policy and Guidance
 – Specialty Engineering
 o System Safety, Reliability and Maintainability Engineering, Quality, Manufacturing, Producibility, Human Systems Integration

• Addressing Emerging Challenges
 – Complex Systems/Systems of Systems
 – Program Protection/Acquisition Cyber-Security
 – University and Industry Engineering Research
 – Modeling and Simulation Support to Acquisition
 – Systems Engineering Federally Funded R&D Centers (FFRDC) Oversight

Our Focus: Policy, People and Practice
DASD(SE) Top-Level FY12 Goals

Strengthen our program engagement, across full product spectrum, using expert technical teams to support informed, affordable decisions

- Increase early engagement in AoA’s and RFPs
- Increase use of quantitative data (new SEP format) in program oversight
- Meet commitment to USD(AT&L) to comprehensively support PDR and CDR
- Maintain program support review tempo and quality while using less resources

Implement comprehensive program protection planning

- As a part of the trusted defense systems strategy

Implement clear, effective reliability and manufacturing policy

- Establish and promulgate guidance and support for these specialty disciplines

Conduct detailed review/update of SPRDE curriculum

- Dovetail into DAU statutory requirement to review Acquisition Curriculum

Assess and Strengthen Workforce Systems Engineering Competencies

Measure and improve Department-wide Systems Engineering performance

- Establish collection of performance metrics, benchmarking
Implementing statutory authorities provided under WSARA:

• Performing continuous technical engagement, oversight, and review of Service acquisition programs’ SE and Development Planning capabilities
 – Continuous engagement with Services’ acquisition enterprises
 – Sharing best practices across the department

• Directly advising USD(AT&L) on SE and Development Planning (including Defense Business Systems and National Intelligence Programs)
 – Active participant in MDAP and MAIS major milestone decision making

• Reviewing and approving MDAP and MAIS Systems Engineering Plans (SEPs)

• Developing SE, Development Planning, Manufacturing, and Reliability and Maintainability policy and guidance

• Influencing Pre-MDD and MS A activities (CAPE and JROC)

• Participating in AoA guidance development and study oversight

WSARA – Weapon Systems Acquisition Reform Act of 2009
Annual Report to Congress

• FY2011 SE and DT&E Annual Report to Congress delivered to Congress and GAO on 6 April 2012
• Detailed review of DASD(SE) Accomplishments in FY11
• Review of FY11 Service progress and plans implementing WSARA to improve SE capabilities
• Overall SE Workforce review, including FY12 Budget Impacts on SE Workforce
• Detailed program by program SE assessments for 40+ MDAPs
Defense Acquisition Guidebook
Chapter 4 (DAGC4) Rewrite

• Use a product-centered approach, where the product is the weapon system or capability under development
• Thread policy, activities/processes, and product together
 Policy (Direction / Requirement) → Process (How) → Product (What)
• Do not restate policy, rather clarify intent of policy and identify expectations
• Do not invent guidance to fill a gap in policy and remove preferences
• Map to Services’ practices
• Minimal links
• Reduce the overall page count
• Include the emerging acquisition models

Provide the thinnest layer of guidance to get the job done
New DAGC4 Framework

Overarching Themes:
- Provide balanced approach in delivering a capability to the war fighter
- Support program success through systematically increasing maturity and reducing risk over the acquisition lifecycle

1. Introduction (Overview)
 - Systems Engineering Definition
 - Why It’s Important

2. Systems Engineering Activities in the Life Cycle
 - By Phase Description of Key Activities
 - Technical Reviews
 - Emerging Acquisition Models

3. Systems Engineering Processes
 - Description of Each Process
 - Design Considerations
 - Specialty Engineering
Fully Implementing the 2011 Revised Systems Engineering Plan

- April 2011 SEP Outline directs programs to present their strategy for identifying, prioritizing, and selecting metrics for monitoring and tracking program SE activities and performance
 - Provide an overview of measurement planning and metrics selection process
 - Include approach to monitor execution-to-plan and identification of roles, responsibilities, and authorities
 - Minimum set of TPMs and intermediate goals and plan to achieve them with as-of dates.
 - Examples include TPMs in areas of software, reliability, manufacturing, integration, and test

Program will use metrics to measure progress.

Figure 3.6-1 Reliability Growth Curve (sample)

<table>
<thead>
<tr>
<th>Name</th>
<th>Spec</th>
<th>Status</th>
<th>Margin</th>
<th>Trend</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamic drag (cents)</td>
<td>< 222</td>
<td>220</td>
<td>2.0</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Thermal utilization (kW)</td>
<td>< 60</td>
<td>55</td>
<td>5.0</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Electrical power utilization (kW)</td>
<td>< 201</td>
<td>123</td>
<td>78</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Operating weight (lbs)</td>
<td>< 55,000</td>
<td>97,001</td>
<td>1,999</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Range (nm)</td>
<td>> 1,000</td>
<td>1,111</td>
<td>111</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Average flyaway unit cost (number)</td>
<td>< 1.5</td>
<td>1.3</td>
<td>0.20</td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.6-2 TPMs (sample)
Reliability and Maintainability
DTM 11-003 Key Policy Attributes

- **Mandates specific reliability planning in the SEP and TEMP:**
 - Submission of a RAM-Cost Rationale Report (SEP)
 - Comprehensive R&M planning (SEP)
 - Reliability Growth Curves (SEP and TEMP)
- **Mandates identification of reliability contract requirements in the TDS and AS:**
 - Translation of AoA sustainment characteristics and Sustainment KPP thresholds into R&M design requirements and contract specifications
 - Identification of systematic processes that the contractor will be required to use to demonstrate achievement of these design requirements
- **Directs PMs and OTAs to assess the likelihood of reliability requirement achievement during IOTE and report this to the MDA at MS C**
- **Establishes specific reliability monitoring and reporting throughout the acquisition process as part of established technical reviews and assessments and in the DAES**
Major Initiatives: Increased Priority for Program Protection

• **Threat:** Nation-state, terrorist, criminal, or rogue developer who:
 – Gain control of systems through supply chain opportunities
 – Exploit vulnerabilities remotely

• **Vulnerabilities**
 – All systems, networks, and applications
 – Intentionally implanted logic
 – Unintentional vulnerabilities maliciously exploited (e.g., poor quality or fragile code)

• **Traditional Consequences:** Loss of critical data and technology
• **Emerging Consequences:** Exploitation of manufacturing and supply chain

• Either can result in corruption; loss of confidence in critical warfighting capability

Today’s acquisition environment drives the increased emphasis:

<table>
<thead>
<tr>
<th>Then</th>
<th>Now</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand-alone systems</td>
<td>Networked systems</td>
</tr>
<tr>
<td>Some software functions</td>
<td>Software-intensive</td>
</tr>
<tr>
<td>Known supply base</td>
<td>Prime Integrator, hundreds of suppliers</td>
</tr>
<tr>
<td>CPI (technologies)</td>
<td>CPI and critical components</td>
</tr>
</tbody>
</table>
Counterfeits Focus in FY12 National Defense Authorization Act (NDAA)

Focus—Detection and Avoidance of Counterfeit Electronic Parts

Tenets:

- Directs DoD to assess current anti-counterfeiting practices and implement “risk-based” policies to address counterfeit
- Requires DoD and contractors whenever possible to buy electronic parts from the Original Component Manufacturer (OCM) or its authorized distributor(s)
- Directs DoD to establish a “Trusted Supplier” program to certify organizations that comply with industry standards on anti-counterfeiting
- Institutes cost recovery for counterfeit items
- Re-affirms mandatory reporting (GIDEQ) for incidents internal and external to DoD
- Requires the Secretary of Homeland Security to establish a methodology for the enhanced inspection of electronic parts after consulting with the Secretary of Defense as to the sources of counterfeit parts in the defense supply chain

Specific Actions:

- Establish DoD-wide definition
- Issue anti-counterfeit mitigation guidance
- Issue remedial action guidance
- Create reporting process (GIDEQ)
- Develop process to analyze and act on reports
- Incorporate in DFAR anti-counterfeit language
USD(AT&L) Memorandum: Overarching Anti-Counterfeit Prevention Guidance

- Addresses an area of critical concern while Department policy is in coordination
- Provides definition
- Emphasizes
 - Risk-based approach
 - Leverages Program Protection Plan and non-conforming processes
 - Directs use of existing contracting clauses and data elements to ensure traceability and reporting on critical items for contractors and subcontractors
 - Use of anti-counterfeiting standards
 - Disposal of counterfeit items
 - Training
Reporting and Information Sharing

- GIDEP (Government-Industry Data Exchange Program) is the official repository connecting Government, Industry, Law Enforcement (internal and external) for counterfeit data

- Weapon System Managers and FMS program offices are responsible for sharing counterfeit information with affected customer countries

- International Traffic in Arms Regulations (ITAR) exemption required for partner country GIDEP access

- Official country requests to US State Department can influence potential change to GIDEP data access limitations
Standards

• Defense Standardization Council (DSC) recognized that enterprise-wide approaches were needed for certain systems engineering disciplines

• DSC directed the Defense Standardization Program Office (DSPO) to form working groups to assess existing systems engineering technical documentation, identify requirements gaps, and make recommendations

• Working groups focused on standards for specific areas:
 – Systems Engineering and Technical Reviews and Audits
 – Configuration Management
 – Manufacturing and Quality
 – Logistics Support Analysis
DoD Workforce Development

- Contributing to the DoD Strategic Workforce Plan in support of DASD(SE)’s responsibility for the Engineering (non-construction) Functional Community Manager

- Managing Service and Agency Personnel as part of the SPRDE-SE/SPRDE-PSE and PQM Acquisition Workforce

- Refining Key Leadership Position (KLP) competency and experience requirements for Lead Systems Engineer

- Participating with the Systems Engineering Research Center (SERC) on several personnel-related research topics

- Supporting DoD STEM (Science, Technology, Engineering and Mathematics) Executive Board
Growing Great Engineers

• **Depth**
 – Extensive expertise and experiences in one or more engineering disciplines and in one or more product domains

• **Breadth**
 – Awareness of and appreciation for other functional areas
 – Understanding of system life cycle and processes
 – Knowledge of other engineering disciplines and how they integrate into a system solution
 – Knowledge of product domains

• **Leadership**
 – Ability to motivate and inspire individuals and teams
 – Comfort in dealing with complexity
 – Focus on underpinning decisions with data
 – Capability to make tough technical decisions
Engineering Challenges

Source: AT&L Acquisition Workforce DataMart, Dec 2011

*Excluded: 222 personnel with unknown Birth Year
Systems Engineering: Critical to Program Success

Innovation, Speed, and Agility

http://www.acq.osd.mil/se