DMSMS in DoD Acquisition: Opportunities and Challenges

Mr. Stephen P. Welby
Deputy Assistant Secretary of Defense for Systems Engineering (DASD(SE)), OUSD(AT&L)

Diminishing Manufacturing Sources and Material Shortages (DMSMS) 2013 Conference
DASD, Systems Engineering Mission

Systems Engineering focuses on engineering excellence – the creative application of scientific principles:

- To design, develop, construct and operate complex systems
- To forecast their behavior under specific operating conditions
- To deliver their intended function while addressing economic efficiency, environmental stewardship and safety of life and property

DASD(SE) Mission: Develop and grow the Systems Engineering capability of the Department of Defense – through engineering policy, continuous engagement with component Systems Engineering organizations and through substantive technical engagement throughout the acquisition life cycle with major and selected acquisition programs.

A Robust Systems Engineering Capability Across the Department Requires Attention to Policy, People and Practice

US Department of Defense is the World’s Largest Engineering Organization

- Over 99,000 Uniformed and Civilian Engineers
- Over 39,000 in the Engineering (ENG) Acquisition Workforce
Key Elements of Defense Strategic Guidance

• The military will be **smaller and leaner**, but it will be **agile, flexible, ready and technologically advanced**.

• Rebalance our global posture and presence to emphasize Asia-Pacific regions.

• Build **innovative partnerships** and strengthen key alliances and partnerships elsewhere in the world.

• Ensure that we can **quickly confront and defeat aggression** from any adversary – anytime, anywhere.

• **Protect and prioritize key investments in technology and new capabilities**, as well as our capacity to grow, adapt and mobilize as needed.
2013 DoD Leadership Focus: Challenges, Choices, Opportunities

• **The challenges** posed by a changing strategic landscape and new budget constraints;

• **The choices** we have in responding to these challenges; and

• **The opportunities** that exist to fundamentally reshape the defense enterprise to better reflect 21st century realities.

Chuck Hagel
24th Secretary of Defense
Current DMSMS Challenges

• Likely impact of current fiscal environment:
 – Fewer new-start development programs
 – More Service Life Extension Programs (SLEP)

• Accelerating technology life cycles means fewer sources for “pin-compatible” replacement parts

• Driving SLEP cost and risk:
 – Loss of OEM sources
 – Obsolete parts
 – Loss of component pedigree
 – Loss of key manufacturing expertise
DMSMS Program Strategy

- Eliminate DMSMS-related production schedule impacts
- Eliminate DMSMS-related degradations to readiness
- Minimize the scope of DMSMS-driven out-of-cycle redesigns when they cannot be completely eliminated

... in a cost effective manner consistent with Better Buying Power (BBP) 2.0 initiatives
DMSMS Planning

- **DMSMS Considerations in Design**
 - Are we appropriately trading DMSMS concerns with other design considerations?
 - Are DMSMS management activities during O&S adequately considered in upfront design activities?
 - Are DMSMS considerations adequately covered in technical reviews and engineering plans?

- **Potential design concepts to minimize DMSMS risk**
 - Technology and component selection
 - Parts management
 - Use of COTS assemblies
 - Open systems design
Resilient Design

• The only constant for DoD systems is change:
 – Evolving threats
 – Strategic and Tactical Innovation
 – Rapid technological change
 – Increased Defense leverage of commercial systems
 – Resource and demand uncertainty

• These factors all demand increased resilience – the ability to explicitly design military systems to have capacity to adapt and adjust to maintain relevance and operational advantage in an environment of change

One method to address obsolescence risk during design is Open System Architecture
Defining Open Systems Architecture

What: A technical architecture that leverages technical standards to support a modular, loosely coupled and highly cohesive system structure

How: Customer definition and ownership of product architecture; publication of key interfaces within the system

Why: Enables Open, Competitive Business Model – allowing components to be added, modified, replaced, removed or supported by different vendors throughout the life cycle – driving opportunities to enhance competition and innovation
DoD Interest in Open Systems Architecture

- Drives risk-prudent competition
- Enables Business Architectures that mirror Technical Architectures
- Provides a constant battle rhythm of competition
- Levels playing field; reduces barriers to market entry
- Addresses obsolescence risk
- Promises wider access to innovation
Leveraging Open Systems to Address DMSMS

Establish an Environment for Change
- Be clear about intent to compete/recompete
- Establish a flexible contracting approach
- Incentivize good behavior among contributing contractors

Focus Systems Engineering for Openness
- Develop common architectures across a product line or across related product families
- Functionally decompose legacy capabilities

Leverage and Exercise Data Rights
- Assess current and needed data rights
- Be a better customer: confirm that data rights restrictions are correct and assert data rights
- Use government purpose rights (GPR) for next competition

Explore Business Architectures and Sound Competition Approaches
- Create alternatives
- Inject OSA through technical insertions
- Consider alternative integrations concepts
- Insure incentives align with desired behaviors
- Reward reuse
Technical Data, Computer Software, and Intellectual Property Rights

- Data rights are considered up-front when developing an acquisition strategy; if critical data and software are not be specified for delivery, they may be unavailable (or unaffordable) years later for use on a program during its sustainment phase.

- **Some Technical Data Rights Strategy considerations:**
 - Data deliverables included in the RFPs and subsequent contracts
 - Data rights, including the responses to the contractor’s data assertion lists
 - Data management approach including how the data will be delivered, accessed, maintained, and protected
Balancing Goals

Customer
• Cost of Data Rights
• Typical Engineering Deliverables

Vendor
• Competitive Advantage
• Financial Return on Research Investment

DMSMS considerations during design must be driven by a value-focused business case.
Profile of Counterfeit Risk

- Most preferred source for critical items
- Approved manufacturing and test process
- Systems engineering and QA program
- Specifications authenticated and original
- Passed DOD audits, documentation trail

- Parts are no longer produced by OEMs
- Suppliers have ability to demonstrate documentation traceability and conformance to specifications
- Demonstrate technical accountability
- Strong inventory and record keeping

- Minimal background on supplier capabilities
- Technical and business expertise unverified
- Company parts sources unknown

Prolonged use of aging systems creates opportunities for counterfeit parts to enter the supply chain
DoD Counterfeit Prevention Policy (DoDI 4140.67)

Purpose:

• Establishes policy
• Assigns responsibilities
• Provides definitions

It is DoD Policy to:

• Employ a risk-based approach
• Apply early prevention and detection procedures
• Document all occurrences in GIDEP
• Notify criminal investigative organizations
• Seek restitution when confirmed
• Provide education and training

Responsibilities:

ASD(L&M):
• Principal point of contact for anti-counterfeit improvements

ASD(R&E):
• Risk-based procedures to identify critical materiel
• Quality assurance policy
• Supplier qualification criteria
• GIDEP management

DPAP:
• Procurement policies

DoD Components
• Identify critical materiel
• Procure from suppliers meeting appropriate criteria
• Conduct materiel testing
• Report in Government – Industry Data Exchange Program (GIDEP)

Counterfeit Materiel Defined as:

“An item that is an unauthorized copy or substitute that has been identified, marked, or altered by a source other than the item’s legally authorized source and has been misrepresented to be an authorized item of the legally authorized source.”

Proposed Acquisition Rule Changes

- **DFARS case (2012-D055) “Detection and Avoidance of Counterfeit Electronic Parts”**
 - Implements provisions of FY12 NDAA §818 to (a) add definitions specific to counterfeit parts, (b) define contractors' responsibilities, and (c) clarify the Government's role.
 - Implements FY13 NDAA §833 regarding allowability.
 - Anticipate publication as a final rule in 2014.

- **FAR case (2013-002) “Expanded Reporting of Non-conforming Items”**
 - Expands Government and contractor requirements for reporting of non-conforming supplies. Partial implementation of FY12 NDAA §818.
 - Anticipate publication as a proposed rule in 2014.

- **FAR case (2012-032), “Higher Level Contract Quality Requirements”**
 - Revises acquisition planning and quality assurance requirements to ensure the performance of higher level quality assurance for critical items.
 - Anticipate publication as a proposed rule in the next few months.
Supply Chain Implications

DoD Supply Chain Framework

Anti-Counterfeit Touch Points

- Plan: Collaboration with Trusted Suppliers
- Source: Reaches all levels of the supply chain
- Make: Demands traceability of all critical parts
- Deliver: Standards and practice
- Return: Prevent counterfeit reentry into the supply chain
Reporting and Information Sharing

• Government – Industry Data Exchange Program (GIDEP) is the official repository connecting Government, Industry, Law Enforcement (internal and external) for counterfeit data.

• Weapon System Managers and Foreign Military Sales program offices are responsible for sharing counterfeit information with affected customer countries.

• International Traffic in Arms Regulations (ITAR) exemptions are required for partner country GIDEP access.
Defense Standardization Update

• Defense Standardization Council identified key, initial areas where standards are needed to restore discipline and consistency

• Focus is on supporting Department needs by leveraging voluntary consensus standards

• Future focus: Identifying key areas where additional standards can drive acquisition effectiveness and efficiency
Challenges to the DoD Engineering Enterprise

• Lay solid foundations…create opportunities

• Envision multiple futures…enable flexible choices

• Design and build systems with focus on lifecycle cost

• Protect our critical defense “intellectual property”

• Focus on “3 Ps” of the DoD Engineering Enterprise: Policy, Practice and, most importantly, People
Systems Engineering: Critical to Defense Acquisition

Innovation, Speed, Agility

http://www.acq.osd.mil/se