Microelectronics (MicroE) Strategy

Raymond Shanahan
Office of the Deputy Assistant Secretary of Defense for Systems Engineering, OUSD(AT&L)

NDIA Trusted Microelectronics Meeting
January 15, 2014
Outline

- Beyond Application-Specific Integrated Circuits (ASICs)
- Identifying critical functions and components
- Analyzing risk and identifying mitigations
- Leveraging existing policies and guidance
Vulnerabilities in supply chain could lead to malicious logic insertions.

- **Current DoD-unique ASICs used in DoD systems are procured via a Trusted Supplier chain per DoD policy**
 - Accounts for approximately 10% of logic-bearing DoD Integrated Circuit (IC) products used in DoD systems
- **Approximately 72% of DoD MicroE are non-ASICs; largely Field Programmable Gate Array (FPGA) devices**
 - DoD has no current trusted supply chain for FPGAs
 - FPGAs include COTS and Military grade products
 - Much of the FPGA value chain is off-shore, e.g., design, fabrication, programming services, testing and packaging
- **FPGAs that are programmed by DoD end-users may face Software Assurance (SwA) risks in FPGA bitstream programming tools, environment, and processes**
- **Bottom line: ASICs & FPGAs are not the only MicroE of concern (must address more than ASIC foundry operations)**
Real World Example

Bill of Material (BOM) excerpt from Program Protection Plan (PPP) review

<table>
<thead>
<tr>
<th>LV</th>
<th>Part Number</th>
<th>Nomenclature</th>
<th>QPA</th>
<th>Unit Price</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>602358-029</td>
<td>ABC SUB/ASSY</td>
<td>1</td>
<td>$0.00</td>
<td>0.0001</td>
</tr>
<tr>
<td>03</td>
<td>0089-1A33</td>
<td>HUMISEAL, TY UR, CL B, GAL</td>
<td>0.01</td>
<td>$0.00</td>
<td>0</td>
</tr>
<tr>
<td>03</td>
<td>MC-0402-875</td>
<td>POLYURETHAN ADH, 875 GM KT</td>
<td>0.01</td>
<td>$0.00</td>
<td>0</td>
</tr>
<tr>
<td>03</td>
<td>25ACL71-M</td>
<td>MAG., MODULE, P/S</td>
<td>1</td>
<td>$0.00</td>
<td>0.0001</td>
</tr>
<tr>
<td>03</td>
<td>030C-M</td>
<td>DC-DC</td>
<td>1</td>
<td>$0.00</td>
<td>0.0001</td>
</tr>
<tr>
<td>03</td>
<td>C075F1</td>
<td>MAG., MODULE, P/S</td>
<td>1</td>
<td>$0.00</td>
<td>0.0001</td>
</tr>
<tr>
<td>03</td>
<td>S3755/1-10</td>
<td>POWDER, FUME SILI 10LB BAG</td>
<td>0.0001</td>
<td>$0.00</td>
<td>0</td>
</tr>
<tr>
<td>04</td>
<td>548FKTWREP</td>
<td>MICROCIRCUIT (REELED)</td>
<td>12</td>
<td>$15.01</td>
<td>180.1572</td>
</tr>
<tr>
<td>04</td>
<td>413ES</td>
<td>MICROCIRCUIT (REELED)</td>
<td>11</td>
<td>$9.69</td>
<td>106.5559</td>
</tr>
<tr>
<td>05</td>
<td>003A0A94</td>
<td>PWR SUPPLY DC-DC</td>
<td>1</td>
<td>$0.00</td>
<td>0.0001</td>
</tr>
<tr>
<td>05</td>
<td>015C91</td>
<td>P/S MODULE, DC-DC</td>
<td>2</td>
<td>$0.00</td>
<td>0.0002</td>
</tr>
<tr>
<td>05</td>
<td>XYZ-1553GT</td>
<td>MICROCIRCUIT (REELED)</td>
<td>1</td>
<td>$428.91</td>
<td>428.9061</td>
</tr>
<tr>
<td>05</td>
<td>2V500-4FG456I</td>
<td>MCKT (MATRIX TRAYED)</td>
<td>1</td>
<td>$199.52</td>
<td>199.5246</td>
</tr>
<tr>
<td>05</td>
<td>602458-001</td>
<td>ABC PWB</td>
<td>1</td>
<td>$233.12</td>
<td>233.1221</td>
</tr>
</tbody>
</table>

Part number: XYZ-1553GT
Category: Communication => Others
Description: Description = MIL-STD-1553, Dual Redundant, Remote Terminal, 4k Words Static RAM, Multichip, Monolithic Transceivers REDACTED VERSION
Bill of Material (BOM) excerpt from Program Protection Plan (PPP) review

<table>
<thead>
<tr>
<th>LV</th>
<th>Part Number</th>
<th>Nomenclature</th>
<th>QPA</th>
<th>Unit Price</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>602358-029</td>
<td>ABC SUB/ASSY</td>
<td>1</td>
<td>$0.00</td>
<td>0.0001</td>
</tr>
<tr>
<td>03</td>
<td>0089-1A33</td>
<td>HUMISEAL, TY UR, CL B, GAL</td>
<td>0.01</td>
<td>$0.00</td>
<td>0</td>
</tr>
<tr>
<td>03</td>
<td>MC-0402-875</td>
<td>POLYURETHAN ADH, 875 GM KT</td>
<td>0.01</td>
<td>$0.00</td>
<td>0</td>
</tr>
<tr>
<td>03</td>
<td>25ACL71-M</td>
<td>MAG., MODULE, P/S</td>
<td>1</td>
<td>$0.00</td>
<td>0.0001</td>
</tr>
<tr>
<td>03</td>
<td>030C-M</td>
<td>DC-DC</td>
<td>1</td>
<td>$0.00</td>
<td>0.0001</td>
</tr>
<tr>
<td>03</td>
<td>C075F1</td>
<td>MAG., MODULE, P/S</td>
<td>1</td>
<td>$0.00</td>
<td>0.0001</td>
</tr>
<tr>
<td>03</td>
<td>S3755/1-10</td>
<td>POWDER, FUME SILI 10LB BAG</td>
<td>0.0001</td>
<td>$0.00</td>
<td>0</td>
</tr>
<tr>
<td>04</td>
<td>548FKTWREP</td>
<td>MICROCIRCUIT (REELED)</td>
<td>12</td>
<td>$15.01</td>
<td>180.1572</td>
</tr>
<tr>
<td>04</td>
<td>413ES</td>
<td>MICROCIRCUIT (REELED)</td>
<td>11</td>
<td>$9.69</td>
<td>106.5559</td>
</tr>
<tr>
<td>05</td>
<td>003A0A94</td>
<td>PWR SUPPLY DC-DC</td>
<td>1</td>
<td>$0.00</td>
<td>0.0001</td>
</tr>
<tr>
<td>05</td>
<td>015C91</td>
<td>P/S MODULE, DC-DC</td>
<td>1</td>
<td>$0.00</td>
<td>0.0002</td>
</tr>
<tr>
<td>05</td>
<td>XYZ-1553GT</td>
<td>MICROCIRCUIT (REELED)</td>
<td>1</td>
<td>$428.91</td>
<td>428.9061</td>
</tr>
<tr>
<td>05</td>
<td>2V500-4FG456I</td>
<td>MCKT (MATRIX TRAYED)</td>
<td>1</td>
<td>$199.52</td>
<td>199.5246</td>
</tr>
<tr>
<td>05</td>
<td>602458-001</td>
<td>ABC PWB</td>
<td>1</td>
<td>$233.12</td>
<td>233.1221</td>
</tr>
</tbody>
</table>

A MIL-STD data bus interface designed for use with military avionics, but also commonly used in spacecraft; functions as a programmable remote terminal consisting of a protocol chip, 2 transceivers & 16K SRAM

Made in U.S., but sold world-wide
Proposition: Trust Policy Objective

- Implement Supply Chain Risk Management (SCRM) on MicroE components used in National Security Systems when military end use is identifiable - thus targetable for malicious acts; in particular, when:
 - Used in intelligence, crypto, command & control, and weapon systems,
 - Critical to military or intelligence mission success, or
 - They manage classified information

- MicroE component attributes of interest include, but are not limited to:
 - Defining a sequence of instructions,
 - Performing one or more decision making functions,
 - Executing basic units of logic,
 - Or, can be altered surreptitiously to trigger malicious functionality or the loss of confidential information.

- Examples of MicroE that may be critical include vulnerable custom ASICs, programmable logic devices (e.g., FPGAs), micro-processors, Application Specific Standard Products, and flash memories

How do we find them and mitigate the risk?
CHALLENGE: How to identify a component as logic-bearing in the federal logistics system? *(working w/DLA to define)*

ASSUMPTIONS:
- Focus is on malicious code risk
- List of 67 “keywords” is sufficient for preliminary data mining efforts
- It is better to include too many National Item Identification Numbers (NIINs) in the final list than not enough
- The Candidate List will continue to morph as more “experts” weigh in

CAVEATS:
- Non-standard data presentation contributes to holes in output
- “Experts” do not agree on all keywords

Three categories:
1) Logic-bearing ICT
2) Possibly Logic-bearing ICT
3) Could be Logic-bearing ICT but data insufficient
What is Critical?

- To execute policy and guidance beyond identifying ASICs, programs need to identify critical functions/components
 - Programs lack visibility into most of the MicroE used in systems
 - Prior to Critical Design Review (CDR), configuration and sources of supply are uncertain
 - Technology Development Strategy (TDS) will have many gaps

- Per MIL-HDBK-61A(SE), Configuration Management Guidance: “Designating (MicroE Critical Components (CCs)) as Configuration Items increases their visibility and management control throughout the development and support phases.”

- To enable DoDI 5200.44 and DAG Chapter 13 compliance for Level I and II CCs, need system configuration data prior to CDR and Bill of Material (BOM) information after CDR

Proposition: During program development, advise contractors and their suppliers of program risk criteria for MicroE and require them to identify and nominate CCs based on criticality analysis
PPP Milestones

- **Technology Development**
 - Document probable CCs and potential countermeasures
 - Plan life-cycle sustainment of proposed technologies

- **Engineering & Manufacturing Development**
 - Protect CCs by implementing appropriate techniques

- **Production & Deployment**
 - Control product baseline for Class 1 configuration changes

- **Operations & Support**
 - Manage CCs life-cycle and configuration
Configuration Management (CM) Process

MicroE CC Criteria
- Customer Needs
- Requirements

Life-Cycle Sustainment
- Organic Inventory Reassignment
- Contractor Logistic Support

MicroE Controlled Items
- Initially tracked as CC functions
- BOM populated as parts selection made
- Reporting to SE or Engineering Support Activity (ESA) for approval/management
- Special Procedures Code assignment

Systems Engineering Process
- Reqmts Analysis
- Functional Analysis/Allocation
- Design Loop
- Verification
- Synthesis
- Reqmts Loop
- Outputs are Configuration Documentation
- Full Rate Production/Full Deployment Decision
- Parts Management

Configuration Management (CM) Process
- System Analysis & Control
- CM is Control Mechanism

Materiel Solution Analysis (MSA)
- Technology Maturation & Risk Reduction (TMRR)

Engineering & Manufacturing Development (EMD)
- Production & Deployment (P&D)

Full Rate Production/Full Deployment Decision
Hardware Control (HC):

<table>
<thead>
<tr>
<th>System-level: Establish initial HC criteria, critical functions and risk mitigation approach.</th>
</tr>
</thead>
</table>

System-level: Before PDR ensure the identification of all critical functions, known CCs, and product risk mitigations.

Component-level: For known Level I/II CCs, consider acceptance inspection/test to mitigate risk of malicious functionality and counterfeit insertion.

System-level: Update HC approach by CDR* identifying all CCs and risk mitigations. Post-CDR, conduct verification test for malicious functionality.

Component-level: For Level I/II CCs, consider acceptance test to mitigate risk of malicious code and counterfeit.

System-level: Production and sustainment HC approach to address maintenance for DMSMS concerns during and post-production.

Component-level: For Level I/II CCs, consider acceptance test to mitigate risk of malicious functionality and counterfeit.

Supplier/Supply Chain Control (SC):

<table>
<thead>
<tr>
<th>System-level: Establish initial SC criteria, critical functions and risk mitigation approach.</th>
</tr>
</thead>
</table>

System-level: Before PDR to identify process risk mitigations

Component-level:
1. Establish component manufacturer qualifications for known CCs,
2. For non-CCs, use commercial & anonymity procurement practice where practicable.

System-level: Updated SC approach before CDR identifying SC risks and mitigations

Component-level:
1. ASICs: DMEA Accredited Trusted Services & Flow,
2. Other CCs: Original Component Manufacturer/Distributor or DLA Qualified Manufacturer/Distributor
3. Anti-counterfeit procedure and Inspections
4. All non-CCs, use anonymity procurement practice where practicable.

System-level: Production and sustainment SC approach before FRP to include maintenance for DMSMS concerns during and post production

Component-level:
1. ASICs: DMEA Accredited Trusted Services & Flow
2. Other CCs: Original Component Manufacturer/Distributor or DLA Qualified Manufacturer/Distributor with chain of custody for CCs
3. Anti-counterfeit procedure and inspections
4. All non-CCs, use anonymity procurement practice where practicable.

* CC= Critical Component, PDR = Preliminary Design Review, CDR = Critical Design Review, FRP = Full-Rate Production, DMSMS = Diminishing Manufacturing Sources and Material Shortages
Supply Chain Risk Countermeasures

Opportunity to Target Surreptitiously

Vulnerability & Threat Analysis

Increased Mitigation Investment

System Level Verification Test

Product Level Acceptance Test
DLA Qualified Testing Supplier List (QTSL)

Countermeasures selected based on Risk

AIA* Destructive Test
AIA* Nondestructive Test

Organic Foundry

Organic Design

DMEA Accredited Supplier**

DLA Qualified Manufacturer List (QML)

Qualified Supplier List of Distributors (QSLD)

Anti-Counterfeit Procedure & Inspections**

IUID** Traceability (DLA DNA, etc.)

Original Component Manufacturer (OCM)

OCM Authorized Distributor

Anonymity Procurement Practice

Commercial Practice

Criticality Analysis

Consequence for Life & Mission

* Advanced Integrity Analysis (AIA)
**DoD Instructions in Place
Transition from Configuration to Parts Management

Acquisition Process

- Governed by DoD 4140.26M (Vol 2 & 4)
- Service defines criticality of part or item
 - Critical Flight Safety
 - Critical Application
- Service defines Acquisition Strategy:
 - Sole source
 - Competitive bid

Service Requirements

Service Engineering Support Activity (ESA) retains configuration control (Tech data)

Logistics Reassignment Process

Sustainment Process

- Integrated Materiel Management
- Wholesale management of consumable items

DoD 4140.26M DoD Integrated Materiel Management (IMM) for Consumable Items
Proposition: Focus trust policy on select devices

- Custom ASIC (57 vendors DMEA accredited)
- Hybrid (54 vendors QML approved by DLA for space apps)
- Semi-custom/tailored FPGA (2 vendors have 88% of DoD market)
- ...Other MicroE meeting criteria (developing mitigations w/DMEA)
Identifying MicroE of Interest

Proposition: Focus trust policy on select devices

- Custom ASIC (57 vendors DMEA accredited)
- Hybrid (54 vendors QML approved by DLA for space apps)
- Semi-custom/tailored FPGA (2 vendors have 88% of DoD market)
- ... Other MicroEs meeting criteria (developing mitigations w/DMEA)

In general order of interest: ASICs, FPGAs, Microprocessors, Logic Application Specific Standard Products, Memories, A-D Converters, Interface Chips

IDA Data: quantities in millions

FactSet Data
Many Supply Chain Risks to Consider

Fraudulent Product
Counterfeit and other than genuine and new devices from the legally authorized source including relabeled, recycled, cloned, defective, out-of-spec, etc.

Malicious Insertion
The intentional insertion of malicious hard/soft coding, or defect to enable physical attacks or cause mission failure; includes logic bombs, Trojan ‘kill switches’ and backdoors for unauthorized control and access to logic and data.

Anti-Tamper
Unauthorized extraction of sensitive intellectual property using reverse engineering, side channel scanning, runtime security analysis, embedded system security weakness, etc.

Quality Escape
Product defect/inadequacy introduced either through mistake or negligence during design, production, and post-production handling resulting in the introduction of deficiencies, vulnerabilities, and degraded life-cycle performance.

Reliability Failure
Mission failure in the field due to environmental factors unique to military and aerospace environment factors such as particle strikes, device aging, hot-spots, electro-magnetic pulse, etc.

Emerging Threats
New threats, counterfeit trends, security attacks, and trust issues that combine two or more threats.

Proposition: Risk Assessment approach must be integrated to address all
Program Protection
Integrated Supply Chain Policy

DoDI 5200.44, Protection of Mission Critical Functions to Achieve Trusted Systems and Networks (TSN)
- Requires AT&L to develop a strategy for managing risk in the supply chain for integrated circuit-related products and services (e.g., FPGAs, printed circuit boards) that are identifiable to the supplier as specifically created or modified for DoD (e.g., military temperature range, radiation hardened).

DoD 4140.1-R, DoD Supply Chain Materiel Management Regulation
- Requires quality assurance methods including contractor selection and qualification programs; quality requirements; pre-award surveys; Government inspection; and testing.
- Quality assurance techniques and testing should stress conforming CAI to contract and technical requirements.

Proposition: Add security risk criteria to safety, reliability, etc. for Critical Application Items (CAI) designation in the supply chain to assist in managing MicroE CCs throughout the lifecycle

DoD Issuances Website: http://www.dtic.mil/whs/directives/corres/ins1.html
CAI aka CC List

- **During system development, contractor submits a proposed list of MicroE CCs that meet security risk criteria**
 - Subject to SE and/or Engineering Support Activity (ESA) approval and oversight
 - CAI designation for security necessitates trusted supply chain flow for ASICs and FPGAs (when practicable)
 - Provides candidate Level I and II CCs for Defense Intelligence Agency (DIA) Threat Assessment Center (TAC) assessments and requiring program protection countermeasures

- **Contractually require the MicroE CC list via special provision and CDRL**
 - SOW task and CDRL in RFP
 - Prime Contractor responsible for maintaining BOM and traceability flow down to suppliers in modular BOMs
Quality – Safety – Security Interrelationships

- Analogous to Aviation Critical Safety Items (CSIs), MicroE are critical security risks if malicious code or a hidden defect can cause:
 1. A catastrophic or critical failure resulting in the loss of or serious damage to a mission critical system;
 2. An unacceptable risk of personal injury or loss of life; or
 3. An uncommanded system failure jeopardizing safety or security.

- General performance requirements for ICs
- Quality and reliability assurance requirements
- Requires manufacturer to establish a process flow baseline
- Provides certification and qualification criteria for manufacturer to be on Qualified Manufacturer List (QML).

Test Method Standard: Microcircuits, MIL-STD-883J
- Establishes methods/controls/procedures for testing
- Intended for Military and Aerospace electronic systems
- Controls/constraints to ensure quality and reliability

DoD Standard Practice: System Safety, MIL-STD-882E
- Hardware or software items
- Determined to potentially contribute to catastrophic or critical mishap
- May mitigate hazard with catastrophic or critical potential

Critical Items List, DI-RELI-80685
- Lists items with critical impact to reliability to contract end items; single point impact
- Developed for space/launch systems, but tailorable for other systems

System Security Engineering Program Management Requirements, MIL-HDBK-1785
- Engineering out security vulnerabilities and designing in countermeasures for life-cycle security of critical defense resources
- Product Security Programs: Government outlines protection criteria for manufacturing critical components; contractor provides input

Visit ASSIST Online, the official source for specifications and standards used by DoD:
https://assist.dla.mil/online/start/index.cfm
Federal Logistics Information System (FLIS)

Web FLIS National Stock Number (NSN) Output Data

<table>
<thead>
<tr>
<th>NSN</th>
<th>Item Name</th>
<th>Query Type</th>
<th>Date of query</th>
</tr>
</thead>
<tbody>
<tr>
<td>59620000575902</td>
<td>MICROCIRCUIT ASSEMBLY</td>
<td>PUBLIC</td>
<td>12/4/2013 3:52:04 PM</td>
</tr>
</tbody>
</table>

Criticality Code

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
<th>Criticality</th>
</tr>
</thead>
<tbody>
<tr>
<td>A458A0 33695</td>
<td>X</td>
<td>M 4 D 1</td>
</tr>
<tr>
<td>8542900000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supplier Status

<table>
<thead>
<tr>
<th>Reference/Part Number</th>
<th>CAGE Code</th>
<th>Status</th>
<th>RNCC</th>
<th>RNVC</th>
<th>DAC</th>
<th>RNAAC</th>
<th>RNFC</th>
<th>RNSC</th>
<th>RNJC</th>
<th>SADC</th>
<th>HCC</th>
<th>MSDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON124550-1</td>
<td>98230</td>
<td>A</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>XN</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON103772-1</td>
<td>98230</td>
<td>A</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>XN</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Item Control Reference

<table>
<thead>
<tr>
<th>Reference/Part Number</th>
<th>EFF-DT</th>
<th>MOE</th>
<th>AAC</th>
<th>SOS</th>
<th>UI</th>
<th>UI PRICE</th>
<th>QUP</th>
<th>CIIC</th>
<th>SLC</th>
<th>REP</th>
<th>USC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013274</td>
<td></td>
</tr>
<tr>
<td>2013274</td>
<td></td>
</tr>
</tbody>
</table>
A Modular BOM in Support of Risk Assessment

- **A maintained engineered indentured BOM can be an important information source for identifying and managing critical MicroE**
- **Identifies the system’s:**
 - Mission critical functions
 - Logic Bearing Components (LBCs), (hardware (HW), firmware (FW) and software (SW))
 - Level I/II CCs proposed to be tracked as CAIs that are a subset of LBCs determined by assessing:
 - System impact
 - Source
 - Whether an IC, hybrid, printed circuit board, etc.
 - Whether specifically designed for military use
 - Overall priority for protection

<table>
<thead>
<tr>
<th>Date: 19 Aug 2013</th>
<th>Redacted Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qty</td>
<td>Reference Designator</td>
</tr>
<tr>
<td>11</td>
<td>R13, R12, R17, R18, R19, R22, R23, R24, R28, R32, R33</td>
</tr>
<tr>
<td>3</td>
<td>R1,R2,R3</td>
</tr>
<tr>
<td>3</td>
<td>LED1,LED2,LED3</td>
</tr>
<tr>
<td>5</td>
<td>D1,D3,D4,D5,D6</td>
</tr>
<tr>
<td>5</td>
<td>IC11,IC12,IC14</td>
</tr>
<tr>
<td>1</td>
<td>IC13</td>
</tr>
</tbody>
</table>
BOMs and Parts Management Policy

- DoD 4120.24-M, Defense Standardization Program, C3.2.4., Parts Management, requires program offices to have a parts management process that … promotes the use of parts with acceptable performance, quality, & reliability

- MIL-STD-3018, Parts Management, and data item description DI-SDMP-81748, Parts Management Plan, make parts management a contract requirement
 - When used with SD-19, Parts Management Guide, sets up a parts management process for prime contractors, suppliers and subcontractors and identifies an efficient part selection process
 - Details how/when the contractor submits initial and updated parts list(s) or BOMs to the Government
 - Addresses the detection, mitigation, and disposition of counterfeit parts:
 - Electronic, electrical, and mechanical parts are to be addressed
 - Use AS5553A, Anti-Counterfeit Standard, as guidance for electronic parts
 - Update to MIL-STD-3018 needed to address detection and mitigation of malicious code in CAIs

- Also need contract provisions and DIDs to complete risk assessment
DoDI 4140.67
DoD Counterfeit Prevention Policy

- Implements DoD counterfeit prevention strategy
 - Requires procurement of critical electronic parts from suppliers that meet risk based criteria
 - Applies additional measures when such suppliers not available

- Counterfeit defined as:
 - “Unauthorized copy or substitute that has been identified, marked, or altered by a source other than the item’s legally authorized source”
 - “Misrepresented to be an authorized item of the legally authorized source”
Recommendations

Refine MicroE policy to address more than ASICs

- **Align and leverage other relevant policies**
 - CM, parts management, anti-counterfeit, anti-tamper, ...
 - Modify security and quality-focused policies, e.g., DLA QML and QPL, to also address MicroE security

- **Adopt CAI designation for security to identify Level I/II CCs**
 - Develop detailed criteria for selecting CCs from LBCs
 - Based on criticality analysis of MicroE type and end use
 - Treat as CM items early in acquisition for emphasis later in BOM and FLIS
 - Most effective way to obtain engineered-modular BOM information for MicroE
 - Narrowly focuses parts search and selection to minimize reporting
 - Use security CAIs designation to highlight CCs for enterprise-wide consideration of countermeasures across the lifecycle
 - DFAR needed to flow-down CC identification and reporting with industry

- **Continue work with DMEA and other stakeholders to identify a cost-effective, enterprise-wide mitigation approach for MicroE countermeasures beyond use of the Trusted Foundry for ASICs**
Systems Engineering: Critical to Defense Acquisition

Innovation, Speed, Agility

http://www.acq.osd.mil/se
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIA</td>
<td>Advanced Integrity Analysis</td>
</tr>
<tr>
<td>ASIC</td>
<td>Application-Specific Integrated Circuit</td>
</tr>
<tr>
<td>ASR</td>
<td>Alternative Systems Review</td>
</tr>
<tr>
<td>ASSIST</td>
<td>Acquisition Streamlining and Standardization Information System</td>
</tr>
<tr>
<td>BOM</td>
<td>Bill of Materials</td>
</tr>
<tr>
<td>CAI</td>
<td>Critical Application Item</td>
</tr>
<tr>
<td>CC</td>
<td>Critical component</td>
</tr>
<tr>
<td>CDRL</td>
<td>Contract Data Requirements List</td>
</tr>
<tr>
<td>CI</td>
<td>Configuration Items</td>
</tr>
<tr>
<td>CDR</td>
<td>Critical Design Review</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Off-The-Shelf</td>
</tr>
<tr>
<td>CSI</td>
<td>Critical safety item</td>
</tr>
<tr>
<td>DAG</td>
<td>Defense Acquisition Guidebook</td>
</tr>
<tr>
<td>DIA</td>
<td>Defense Intelligence Agency</td>
</tr>
<tr>
<td>DID</td>
<td>Data Item Description</td>
</tr>
<tr>
<td>DLA</td>
<td>Defense Logistics Agency</td>
</tr>
<tr>
<td>DMEA</td>
<td>Defense MicroElectronics Activity</td>
</tr>
<tr>
<td>DMSMS</td>
<td>Diminishing Manufacturing Sources and Material Shortages</td>
</tr>
<tr>
<td>ESA</td>
<td>Engineering Support Activity</td>
</tr>
<tr>
<td>FRP</td>
<td>Full-Rate Production</td>
</tr>
<tr>
<td>FW</td>
<td>Firmware</td>
</tr>
<tr>
<td>FLIS</td>
<td>Federal Logistics Information System</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field-programmable gate array</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated circuit</td>
</tr>
<tr>
<td>ICT</td>
<td>Integrated Circuit Technology</td>
</tr>
<tr>
<td>IUID</td>
<td>Item Unique Identification</td>
</tr>
<tr>
<td>LBC</td>
<td>Logic-bearing component</td>
</tr>
<tr>
<td>MicroE</td>
<td>Microelectronics</td>
</tr>
<tr>
<td>NIIN</td>
<td>National Item Identification Number</td>
</tr>
<tr>
<td>OCM</td>
<td>Original Component Manufacturer</td>
</tr>
<tr>
<td>PDR</td>
<td>Preliminary Design Review</td>
</tr>
<tr>
<td>PPP</td>
<td>Program Protection Plan</td>
</tr>
<tr>
<td>QSLD</td>
<td>Qualified Supplier List of Distributors</td>
</tr>
<tr>
<td>QML</td>
<td>Qualified Manufacturer List</td>
</tr>
<tr>
<td>QPL</td>
<td>Qualified Products List</td>
</tr>
<tr>
<td>QTSL</td>
<td>Qualified Testing Supplier List</td>
</tr>
<tr>
<td>RA</td>
<td>Risk Assessment</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposal</td>
</tr>
<tr>
<td>SCRIM</td>
<td>Supply chain risk management</td>
</tr>
<tr>
<td>SE</td>
<td>Systems Engineering</td>
</tr>
<tr>
<td>SFR</td>
<td>System Functional Review</td>
</tr>
<tr>
<td>SOW</td>
<td>Statement of Work</td>
</tr>
<tr>
<td>SRR</td>
<td>System Requirements Review</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>SwA</td>
<td>Software assurance</td>
</tr>
<tr>
<td>TAC</td>
<td>Threat Assessment Center</td>
</tr>
<tr>
<td>TDS</td>
<td>Technology Development Strategy</td>
</tr>
<tr>
<td>TNS</td>
<td>Trusted networks and systems</td>
</tr>
</tbody>
</table>
Web Resources

• ASSIST Online, the source for DoD Standards, Specifications
 https://assist.dla.mil/

• Defense Acquisition Guidebook
 https://dag.dau.mil

• Defense MicroElectronics Activity (DMEA)
 http://www.dmea.osd.mil/

• Defense Standardization Program
 http://www.dsp.dla.mil/

• DoD Issuances (e.g., Directives, Instructions, Publications/Manuals)

• Federal Logistics Information System (FLIS)
 http://www.dlis.dla.mil/webflis/

• SAE
 http://standards.sae.org/as5553a/
MicroE-related Issuances and Guidance

• DoDI 5200.44, Protection of Mission Critical Functions to Achieve Trusted Systems and Networks (TSN)
• DoD 4140.1-R, DoD Supply Chain Materiel Management Regulation
• DoD 4140.26M DoD Integrated Materiel Management (IMM) for Consumable Items
• DoDI 4140.67 DoD Counterfeit Prevention Policy
• Defense Acquisition Guidebook Chapter 13, Program Protection Planning
MicroE-related DIDs, Handbooks, Manuals, Specifications, and Standards

- DI-RELI-80685, Critical Items List
- DI-SDMP-81748, Parts Management Plan
- DoD 4120.24-M, Defense Standardization Program
- MIL-HDBK-61A(SE), Configuration Management Guidance
- MIL-HDBK-1785, System Security Engineering Program Management Requirements
- MIL-STD-882E, DoD Standard Practice: System Safety
- MIL-STD-3018, Parts Management
- SAE AS5553A, Fraudulent/Counterfeit Electronic Parts; Avoidance, Detection, Mitigation, and Disposition
- SD-19, Parts Management Guide