Engineering for Resilience
January 6, 2016

Jeffery P. Holland, PhD, PE (SES)
Engineered Resilient Systems (ERS) Community of Interest (COI) Lead
Director, US Army Engineer Research and Development Center (ERDC)
Director, Research and Development, US Army Corps of Engineers
A Resilient System

- Reliable and effective in a wide range of contexts
- Adaptable to many others through reconfiguration or replacement
- Predictable degradation of function

C-130 Hercules
Main tactical airlifter for many military forces worldwide

B-52 Bomber
Pre-eminent American Heavy bomber for the last 54 years

AC-130A
Drone Control

EC-130E
Airborne battlefield command and control & electronic warfare

HC-130H
Maritime and Ice Patrol

JC-130
Mid-air Retrieval

Boeing B-52B
1st USAF Version, Recon pod

B-52 D
Big Belly mod 500 LB bombs

B-52 G
Major redesign, Advanced Avionics to aft

B-52 F
Larger capacity engine

B-52H
Display with weapons Barksdale AFB 2006

B-52 H
Carrying 2 D21 drones

Images, text from public domain.
21st Century: Shifting Engineering Processes

The changing characteristics of a “system” require a new vision for the future of engineering, design and manufacturing.

20th Century Systems Engineering

- Custom hierarchy
- Stand-alone, stove-piped
- Physical components
- Physical flows and interfaces
- Hardware control
- Human control

21st Century Systems Engineering

- Open architectures
- Collaborative environments
- HPC & physics-based resources
- Digital data & engineering
- Deep Analytics and Trades
- Automatic processes

Requirements / Architecture

Moving from custom build to Composability and Integration

D. Long, INCOSE President
Analysis Drives Design, Engineering, and Decisions

Requirements Drive Design

Previous 10-15 years
Fixed, focused, governed

- Highly specialized platforms
- Fixed capabilities
- Costly
- Focused mission portfolio
- Long development time

Point Solutions for Asymmetric Warfare

Data & Analyses Drive Design

Now.....The Future
Modular, adaptable, autonomous

- Flexible platforms
- Adaptable to capabilities
- Affordable
- Resilient to new threats
- Short development time

Composable, Agile Solutions for Multiple Missions and Threats
ERS Goal: Quantify and Buy Down Acquisition Risk

Problems

- Increasing Costs
- Rate of change and uncertainty
- Rapid, emergent threat
- Requirements creep
- Adaptability deficiency
- Life extension demand
- Technology disruptors
- Workforce decline/expertise

New Technology Approach

Empower rigorous risk analysis

- Requirements Generation
- Analysis of Alternatives
- Lifecycle Intelligence
- Virtual Prototyping

Mitigate Issue:
28% Life Cycle Cost vs. 72% Life Cycle Cost

GROWING COMPLEXITY

BUDGET CONSTRAINTS
Problem – the last 50 years:
Design Engineering - A Linear, Process-heavy Environment

- Fixed 75% Lifecycle Costs
- Material Solution

- Evolving Threat
- Technology Disruption

- Unstable Performance
- Cost & Schedule Overrun

- Limited Effectiveness

Operational Overview:

- Linear acquisition process
- Lacks adaptability to changes
- Stove-piped workforce and data sources
- Information shared via static documents
- Limited Reuse

User Needs:
- Technology Changes
- Materiel Changes
- Design Changes
- Requirements Changes
- Other Changes

Negatively impacts:
- Response time
- Time & delivery
- Budget
- …etc.

Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.
ERS Leverages 50 Years of S&T Investments

ERS LEVERAGES YEARS OF MAJOR DOD S&T INVESTMENTS

- ADVANCED MODELING
- CONTEXT SIMULATION
- HIGH PERFORMANCE COMPUTING
- MATHEMATICAL OPTIMIZATION
- OPEN & TRUSTED SYSTEMS

ERS INTEGRATED CAPABILITY

- OPEN ARCHITECTURE IMPLEMENTATION
- LIFECYCLE INTELLIGENCE & MODELING
- DATA ACCESS & RETENTION
- KNOWLEDGE MANAGEMENT
- SECURITY

- MODELS
- MULTI-DIMENSIONAL TRADESPACE ANALYTICS
- HIGH PERFORMANCE COMPUTING
- BIG DATA ANALYTICS & VISUALIZATION
- IP PROTECTION

ERS is the first integration of modern computational engineering tools and technologies that directly impact DoD Acquisition environments.
Components of a New Design Environment

Tradespace Tools & Analytics
- Decision Support
- Big Data Analytics & Visualization
- Open Architecture
- Knowledge Management
- Data Retention
- HPCMP & S&T Resources

Integrated Capability and Workflow
- ERS Cloud
 - 10,000X Productivity Improvement In AoA
- ERS Env
- Tradespace Tools & Analytics
- Analytics
- Rapid Prototyping & Evaluation
- Virtual Warfighting, Reduce Prototyping Time & Costs

Requirements Generation
- Fully Explore & Identify KPPs
- MOV ENGINEERING LEFT

Analysis of Alternatives
- Reduces alternatives from thousands to tens or less
- Design Req
- Analytic Tools
- Feedback
- Adv M&S

Virtual Prototyping & Evaluation
- Rapidly Distill Many More Alternatives

Policy / Regulation
- ARCHITECTURE TRADE ANALYSIS
- ADVANCED MODELING
- ENV REPRESENTATION
- MISSION CONTEXT
- other

ERS Cloud

Integrated Capability and Workflow

HPCMP & S&T Resources
ERS Layered Architecture

- Reduction to manageable pieces
- Isolates complexity
- Organizes development
- Abstracts details
- Promotes reusability
- Clear frame of reference
ERS Powerful Tradespace Approach

ERS Tradespace Concept

- Architecture
- Tradespace Analytics
- Advanced Modeling
- Environmental Rep.
- Mission Context

ERS CLOUD COMPUTING ENVIRONMENT (CCE)

10,000x Improvement in productivity in Analysis of Alternatives

Efficiently discover key performance parameters (KPPs)

Currently Applied ERS Advanced Tradespace Analytics

- **TRADE lite**
 - Early concept tool
 - Functional / component breakdown
 - Explore tradespace edges

- **TRADE Studio**
 - Highly computational
 - Sifts through millions of designs
 - Refined set of specifications for viable design solutions

Expand Tradespace Fully

- Performance Assessments
- Performance Metrics
- High-fidelity Models
- Parameter Sweeps: Design Variations
Organization of Tradespace Capability

** DEFINE **
Define the system and its requirements in SysML.

** MODEL **
Construct accurate and complete tradespaces.

** TRADESTUDIO **

** ANALYZE **
Visualize and explore the tradespace.

- SysML Authoring Tool
- ERSTAT Data Analytics
- Environmental Simulation
- CREATE
- Large Data Analysis
- Select and Compare
- Analysis of Alternatives
- Mission Context Analysis
- Statistical & Predictive Analysis
ERS Infrastructure

Systems engineers collaborate on design decisions

DoD Supercomputing Resources

ERS Cloud Services

HTML5 access to ERS products

TradeStudio

ERS Infrastructure

DoD Web Services

Model API: Soap/REST Interface

Challenges:
- Protect IP
- Access Control
- System Admin. Rights
- Scaling

Industry Interfacing
Enable Cost Reduction, Agility and Early Performance Feedback

Simulate Any Environment…Anywhere…Anytime

Rapid Prototyping: More Designs, Less Time
Support Testing & Evaluation

Mission Test: Both Notional & Actual
Employ Variable-Fidelity
Current DoD Acquisition Application
DoD Acquisition Impact

US Navy NSWCCD
ERS Ship Design Projects

LX(R) AoA
22,000 alternatives analyzed in 6 weeks

~16 Billion Decision

Small Surface Combatant (SSC)
19M designs analyzed in 3 months resulting in 270K feasible alternatives

~12 Billion Decision

Submarine Class
Virginia-class replacement Currently preparing analysis tools

US Army AMRDEC
ERS Rotorcraft Projects

Evaluated Boeing’s IRAD-produced, CH-47 rotor blades

Full, accurate assessments achieved with ERS tools & CREATE Helios models.

ERS and CREATE tools ready for transition to Future Vertical Lift program

US Air Force
Trades Analysis & Virtual Prototyping

Low Cost Attritable Aircraft Technology (LCAAT)

Trades Analysis (Air Force)
Design Trades, Mission Trades

Virtual Prototyping (OSD ECP)
Virtually Test & Warfight Designs

ERS and CREATE tools ready for transition to Future Vertical Lift program
Computational Research & Engineering Acquisition Tools and Environments (CREATE) Program

Air:
- **Fixed-wing aircraft, rotorcraft, conceptual design, and operational testing and transition**

Ground Vehicle (GV):
- **Autonomous navigation and operational testing**

Meshing and Geometry (MG) Support:
- **CREATE MG improves the ease, speed, flexibility, and quality of geometry and mesh generation**

CREATE
Fully Validated on Real Problems

- **CREATE-AV**
 Aircraft (AV) Design Tools

- **CREATE-SHIPS**
 Ship Design Tools

- **CREATE-RF**
 Radio Frequency (RF) Antenna Design and Integration Tools

- **CREATE-MG**
 Meshing and Geometry (MG) Support

- **CREATE-GV**
 Ground Vehicle (GV) Design Tools

Ship Design Tools:
- **Shock/damage, hydrodynamics and early-stage design, and operational testing and transition**

Radio Frequency (RF) Antenna:
- **Conceptual design and detailed analysis tools for myriad DoD platforms**
CREATE AV Tools
Concept design, High Fidelity Fixed-Wing and Rotary-Wing

Kestrel and Helios: *Air frame (Aerodynamics & Structural Mechanics), Control, Propulsion*

Fixed Wing
- Virtual Prototyping
- Design Verification
- Operational Use Evaluation
- Planning/rehearsal of Flight Tests
- Performance Certification

Simulates A-10 baseline & alternative wing leading-edge configs

Virtual airframe-propulsion system integration assessment early in design decision.

Multi-body static/dynamic motion w/moving control surfaces & aero-elastic aircraft

Rotorcraft

Virtual testing of integrated CH-47F new rotor

Holistic Analysis of Platform Dynamics

Rapidly, accurately model H-60 main/tail rotor in multiple configurations & conditions in context of dynamic system performance

DaVinci: Rapid Conceptual Design

Simulates A-10 baseline & alternative wing leading-edge configs
Current ERS Rotorcraft Efforts

Initial experiment demonstrating value of virtual prototyping using validated, high-fidelity models

FY14 and Prior
- Boeing proposed new CH-47 rotor blade
- CREATE-AV Helios validated on old blade design
- CREATE-AV Helios confirmed added lift of new blade design in hover
- Paved way for larger projects in virtual prototyping (potential: Future Vertical Lift)

FY15: CREATE-AV Helios
- Analyzed payload allowance and maximum forward velocity characteristics
- Pre-flight test validation
- ERSTAT (ERS-built tradespace) generated and analyzed 1000’s of missions in a matter of minutes

FY16 and Beyond:
- Live flight tests with new rotor blade will be informed by early computational analyses
- Integrate Rotor Performance Maps into real-time mission planning tools from ERS work

ERS AIAA SCITECH – Jan 2016
Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.
ERS Approach Supports Integrated Turbine Engine Program (ITEP) Analysis

- ERS success on Blackhawk prompted application to Apache attack helicopter
 - ERS provides employment of a *highly computational and integrated approach*
 - System-based, design-trade assessments made possible with ERS tradespace analysis tools
 - Physics-based, system performance reduces time, cost and error in new or upgraded designs

"More engine power to the Black Hawk and the Apache means farther range, more time on the objective … all resulting in a more lethal, more effective mission,"

"….new engine that would make current choppers more fuel-efficient, give them longer duration and additional power to carry extra weight."

ERS Major Industry Partnerships

Industry Partners are formally engaged in ERS development.

Government-Industry-Academia Architecture Working Group

Analysis of very big data

ERS tradespace analytics in the context of decision-making: AoA, scoring, bias elimination, “openness”…

Access to HPC Resources for design projects

Industry “sandboxes” for testing ERS architecture/tools

Nov. 18-19, 2015
Software Engineering Institute
ERS Adoption Strategy

2012 – 2014
TECHNOLOGY DEVELOPMENT & EXPERIMENTATION
Continuous Technology Advances, Insertions and Improvements

- Initial Tradespace Tools
- Prototype Knowledge Management Environment
- Initial Integrating Architecture
- Linked Physics-based Models

2015 – 2016
IMPLEMENTATION WITHIN DOD PROJECTS

- 2nd Gen Tradespace Tools - Ships, GV, AV
- Industry Linked to Architecture
- Initial Cost Modeling
- Initial Mission Tools

2017 – 2019
CAPABILITY INTEGRATION TESTING AND FIELDING

- User-configured Analytics
- Risk Representation and Mitigation
- Environmental Simulation Anywhere on Earth
- Manufacturability, Producing & Life Cost Tools
- Mission Context Tools

2020 – 2024
FULL TRANSITION TO ACQUISITION PROCESSES

- Modeling of entire acquisition cycle
- Validated cost representation
- Virtual prototyping of all materiel alternatives
- Cognitive computing

ERS V1.X ERS V1.0 ERS V2.0 ERS V3.0 ERS V4.0

Q1FY16

Trade Analysis at Increasing Echelons →

ERS AIAA SCITECH – Jan 2016
Future Work Investments

Significant Challenges

<table>
<thead>
<tr>
<th>Technical Area</th>
<th>Challenges 2016 - 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Prototyping</td>
<td>Physics-based modeling, environmental influences and variations, Universal Task List (UTL) unit and system behaviors, mission immersion</td>
</tr>
<tr>
<td>Modeling Sub-systems</td>
<td>Dependencies, category theory, composition, reconfigurable and dynamic design</td>
</tr>
<tr>
<td>Material Life and Failure</td>
<td>Material models, material strength, thermal models, etc.</td>
</tr>
<tr>
<td>Lifecycle Cost Modeling</td>
<td>True cost analysis over sustainment</td>
</tr>
<tr>
<td>System-of-system Analysis</td>
<td>Identify and describe system of systems behaviors, components, structures, and contribution to joint and universal tasks</td>
</tr>
<tr>
<td>Modeling Manufacturing</td>
<td>Identify and generate manufacturing processes and assembly operations capable of predicting time and cost of manufacturing</td>
</tr>
</tbody>
</table>
Questions & Answers