
© 2009 IBM Corporation

Architectural Governance

Grady Booch
IBM Fellow

1

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Outline

 The context for architecture

 Architecture defined

 Representing architecture

 Architectural governance

 Organizational best practices

2

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

The context for architecture

3

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 4

Forces in software

Technology churn

Scalability

Performance

Capacity

Fail safe/Fault tolerance

Reliability/Availability

Security

Functionality

Cost/Schedule
 Compatibility

Resilience

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 5

The limits of technology
  The laws of physics

  The laws of software

  The challenge of algorithms

  The difficulty of distribution

  The problems of design

  The importance of organization

  The impact of economics

  The influence of politics

  The limits of human imagination

Fundamental

Human

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Physical systems

  Mature physical systems have stable architectures
–  Aircraft, cars, and ships
–  Bridges and buildings

  Such architectures have grown over long periods of time
–  Trial-and-error
–  Reuse and refinement of proven solutions
–  Quantitative evaluation with analytical methods

  Mature domains are dominated by engineering efforts
–  Analytical engineering methods
–  New materials
–  New manufacturing processes

6

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Software-intensive systems

 A system in which software is the dominant,
essential, and indispensable element
– E-commerce system
–  IT (business) system
– Telephone switch
– Flight control system
– Real-time control system (e.g. industrial robot)
– Sophisticated weapons system
– Software development tools
– System software (e.g. operating systems or compilers)

7

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architecting software is different

 No equivalent laws of physics

 Transparency

 Complexity
– Combinatorial explosion of state space
– Non-continuous behavior

– Systemic issues

 Requirement and technology churn

 Low replication and distribution costs

8

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 9

Misconceptions about architecture

  Architecture is just paper
  Architecture and design are the same things
  Architecture and infrastructure are the same things
  <my favorite technology> is the architecture
  A good architecture is the work of a single architect
  Architecture is simply structure
  Architecture can be represented in a single blueprint
  System architecture precedes software architecture
  Architecture cannot be measured or validated
  Architecture is a science
  Architecture is an art

Kruchten

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architecture defined

10

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 11

Architecture defined (very informally)

 Software architecture is what software architects
do

Beck

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Software architecture (more formally)

“The software architecture of a program or
computing system is the structure or structures of
the system, which comprise the software elements,
the externally visible properties of those elements,
and the relationships among them.”

Bass/Clements/Kazman, Software Architecture in Practice

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architecture defined (operational)

 All architecture is design; not all design is
architecture. A system’s architecture is defined by
its significant design decisions (where
“significant” is measured by the cost of change).

 Every software-intensive system has an
architecture, forged from the hundreds of
thousands of small decisions made every day.

 The code is the truth, but not the whole truth:
most architectural information is preserved in
tribal memory.

13

Booch

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

An Classic Analogy

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

A Fresh Analogy (A Snapshot In Time)

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

A Fresh Analogy (A Broader Expanse)

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Therefore

 The architecture of an enterprise’s software
intensive systems is akin to the instantaneous
structure and behavior of a river

 The lifecycle of that architecture is akin to the
intentional and accidental morphing of those
instantaneous architctures over a region of time.

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Representing architecture

18

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Views and documentation

  Architecture documentation is an essential governance
artifact

  An architecture is a multidimensional construct,
too involved to be seen all at once

  Systems are composed of many structures
–  Design-time concerns – showing modules, their composition/

decomposition and mapping to code units; how teams cooperate
to build the system; …

–  Run-time concerns - processes and how they synchronize;
programs and how they call or send data to each other; how
components and connectors work; …

–  Software in its environment - how software is deployed on
hardware; network connections and ports;…

  A view is a representation of a structure. We use views to
manage complexity by separating concerns

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

View-based documentation

Views give us our basic principle of architecture
documentation

SEI

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Adapting views

 Not all systems require all views
– Single process (ignore process view)

– Small program (ignore implementation view)

– Single processor (ignore deployment view)

 Some systems require additional views
– Data view

– Security view

– Other aspects

21

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Cross functional mechanisms

 Some structures and behaviors crosscut
components

•  Security
•  Concurrency
•  Caching
•  Persistence

 Such elements usually appear as small code
fragments sprinkled throughout a system

 Such elements are hard to localize using
traditional approaches

22

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Alternate model view frameworks

23

• ToGAF

• DoDAF

• MoDAF

• NAF

• NAE

• Zachman

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 24

Representing software architecture

Logical View

End-user
Functionality

Implementation View

Programmers
Configuration management

Process View

Performance
Scalability
Throughput

System integrators
Deployment View

System topology
Communication

Provisioning

System engineering

Conceptual Physical

Use Case View

Kruchen, 4+1 Model View

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architectural governance

25

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 26

Focus over time
Discovery Invention

Focus

Implementation

Selic

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

The Enterprise Architecture Lifecycle

 Phases
–  Inception

– Elaboration

– Construction

– Transition

 But also
– Evolution

– Operation

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

The Enterprise Architecture Lifecycle

  In my experience
– All hyperproductive organizations tend to have a lifecycle

that involves the growth of a system’s architecture
through the incremental and iterative release of testable
executables.

 Not one lifecycle, but many
– Different stages of execution, maturation, and quality

– Harmony, resonance, and cacaphony

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Process best practices

 Grow the architecture of a system through the
incremental and iterative release of testable
executables
– Focus on executables

–  Incremental and iterative progress

– Architecture as artifact

29

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Process best practices

  Attack major risks early and continuously or else they
will attack you

  Ensure that you deliver value to your customer
  Have a maniacal focus on working software
  Accommodate change early in the project
  Baseline an executable architecture early on
  Build your system with components
 Work closely together as one team
 Make quality a way of life, not an afterthought

30

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architecture as an artifact of governance

 Development takes place at two levels:
architecture and implementation
– Both are ongoing, and they interact with each other

strongly. New implementations suggest architectural
changes. Architectural changes usually require radical
changes to the implementation.

Coplien & Harris, Organizational Patterns

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 32

The soul of an architecture is found
in its mechanisms that cut across the components

of the system, thus yielding its essential
structures and behaviors

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architecture as artifact

 Vehicle for communication among stakeholders

 Reasoning about an evolving system

  Intentional transformation

 Mechanism for attacking risk

 Accountability

 Preservation of tribal memory

33

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 34

Architectural governance maturity

Ross et al, Enterprise Architecture as Strategy

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Organizational best practices

35

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Coplien & Harris, Organizational Patterns

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Coplien & Harris, Organizational Patterns

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Organizational Patterns

 Big dripping hairball

 Senior designer

 Chief architect

 Architecture team

 Architecture control board

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

In conclusion

39

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Things You Can Do With Old Software

 Give it away

  Ignore it

 Put it on life support

 Rewrite it

 Harvest from it

 Wrap it up

 Transform it

 Preserve it

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Things You Can Do With An Architecture

 Reason about its transformation
– Evolution, rapid reaction, modernization, merging,

acquisition, divestiture

 Asset identification and repurposing
– Product line

– Strategic thrust

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 42

Grady Booch, IBM Fellow
gbooch@us.ibm.com

http://www.handbookofsoftwarearchitecture.com

