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The context for architecture 
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Forces in software 

Technology churn


Scalability


Performance


Capacity


Fail safe/Fault tolerance


Reliability/Availability


Security


Functionality

Cost/Schedule
 Compatibility


Resilience
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The limits of technology 
  The laws of physics 

  The laws of software 

  The challenge of algorithms 

  The difficulty of distribution 

  The problems of design 

  The importance of organization 

  The impact of economics 

  The influence of politics 

  The limits of human imagination 

Fundamental 

Human 
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Physical systems 

  Mature physical systems have stable architectures 
–  Aircraft, cars, and ships 
–  Bridges and buildings 

  Such architectures have grown over long periods of time 
–  Trial-and-error 
–  Reuse and refinement of proven solutions  
–  Quantitative evaluation with analytical methods  

  Mature domains are dominated by engineering efforts 
–  Analytical engineering methods 
–  New materials 
–  New manufacturing processes 
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Software-intensive systems  

 A system in which software is the dominant, 
essential, and indispensable element 
– E-commerce system 
–  IT (business) system 
– Telephone switch 
– Flight control system 
– Real-time control system (e.g. industrial robot) 
– Sophisticated weapons system 
– Software development tools 
– System software (e.g. operating systems or compilers) 
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Architecting software is different 

 No equivalent laws of physics 

 Transparency 

 Complexity 
– Combinatorial explosion of state space 
– Non-continuous behavior 

– Systemic issues   

 Requirement and technology churn 

 Low replication and distribution costs  
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Misconceptions about architecture 

  Architecture is just paper 
  Architecture and design are the same things 
  Architecture and infrastructure are the same things 
  <my favorite technology> is the architecture 
  A good architecture is the work of a single architect 
  Architecture is simply structure 
  Architecture can be represented in a single blueprint 
  System architecture precedes software architecture 
  Architecture cannot be measured or validated 
  Architecture is a science 
  Architecture is an art 

Kruchten
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Architecture defined 
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Architecture defined (very informally) 

 Software architecture is what software architects 
do 

Beck




IBM Research/Software Engineering Institute 

© 2009 IBM Corporation 

Software architecture (more formally) 

“The software architecture of a program or 
computing system is the structure or structures of 
the system, which comprise the software elements, 
the externally visible properties of those elements, 
and the relationships among them.” 

Bass/Clements/Kazman, Software Architecture in Practice
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Architecture defined (operational) 

 All architecture is design; not all design is 
architecture. A system’s architecture is defined by 
its significant design decisions (where 
“significant” is measured by the cost of change). 

 Every software-intensive system has an 
architecture, forged from the hundreds of 
thousands of small decisions made every day. 

 The code is the truth, but not the whole truth: 
most architectural information is preserved in 
tribal memory. 
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Booch
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An Classic Analogy 
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A Fresh Analogy (A Snapshot In Time) 
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A Fresh Analogy (A Broader Expanse) 
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Therefore 

 The architecture of an enterprise’s software 
intensive systems is akin to the instantaneous 
structure and behavior of a river 

 The lifecycle of that architecture is akin to the 
intentional and accidental morphing of those 
instantaneous architctures over a region of time. 
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Representing architecture 
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Views and documentation  

  Architecture documentation is an essential governance 
artifact 

  An architecture is a multidimensional construct,  
too involved to be seen all at once 

  Systems are composed of many structures 
–  Design-time concerns – showing modules, their composition/ 

decomposition and mapping to code units; how teams cooperate 
to build the system; … 

–  Run-time concerns - processes and how they synchronize; 
programs and how they call or send data to each other; how 
components and connectors work; … 

–  Software in its environment - how software is deployed on 
hardware; network connections and ports;… 

  A view is a representation of a structure. We use views to 
manage complexity by separating concerns 
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View-based documentation 

Views give us our basic principle of architecture 
documentation 

SEI
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Adapting views 

 Not all systems require all views 
– Single process (ignore process view) 

– Small program (ignore implementation view) 

– Single processor (ignore deployment view) 

 Some systems require additional views 
– Data view 

– Security view 

– Other aspects 
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Cross functional mechanisms 

 Some structures and behaviors crosscut 
components 

•  Security 
•  Concurrency 
•  Caching 
•  Persistence 

 Such elements usually appear as small code 
fragments sprinkled throughout a system 

 Such elements are hard to localize using 
traditional approaches 
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Alternate model view frameworks 
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• ToGAF 

• DoDAF 

• MoDAF 

• NAF 

• NAE 

• Zachman 
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Representing software architecture 

Logical View 

End-user  
Functionality 

Implementation View 

Programmers  
Configuration management  

Process View 

Performance 
Scalability 
Throughput  

System integrators 
Deployment View 

System topology 
Communication  

Provisioning 

System engineering 

Conceptual Physical 

Use Case View 

Kruchen, 4+1 Model View
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Architectural governance 
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Focus over time 
Discovery Invention 

Focus 

Implementation 

Selic
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The Enterprise Architecture Lifecycle 

 Phases 
–  Inception 

– Elaboration 

– Construction 

– Transition 

 But also 
– Evolution 

– Operation 
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The Enterprise Architecture Lifecycle 

  In my experience 
– All hyperproductive organizations tend to have a lifecycle 

that involves the growth of a system’s architecture 
through the incremental and iterative release of testable 
executables. 

 Not one lifecycle, but many 
– Different stages of execution, maturation, and quality 

– Harmony, resonance, and cacaphony 
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Process best practices 

 Grow the architecture of a system through the 
incremental and iterative release of testable 
executables 
– Focus on executables 

–  Incremental and iterative progress 

– Architecture as artifact 
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Process best practices 

  Attack major risks early and continuously or else they 
will attack you 

  Ensure that you deliver value to your customer 
  Have a maniacal focus on working software 
  Accommodate change early in the project 
  Baseline an executable architecture early on 
  Build your system with components 
 Work closely together as one team 
 Make quality a way of life, not an afterthought 
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Architecture as an artifact of governance 

 Development takes place at two levels: 
architecture and implementation 
– Both are ongoing, and they interact with each other 

strongly. New implementations suggest architectural 
changes. Architectural changes usually require radical 
changes to the implementation. 

Coplien & Harris, Organizational Patterns
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The soul of an architecture is found 
in its mechanisms that cut across the components 

of the system, thus yielding its essential 
structures and behaviors 
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Architecture as artifact 

 Vehicle for communication among stakeholders 

 Reasoning about an evolving system 

  Intentional transformation 

 Mechanism for attacking risk 

 Accountability 

 Preservation of tribal memory 
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Architectural governance maturity 

Ross et al, Enterprise Architecture as Strategy
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Organizational best practices 
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Coplien & Harris, Organizational Patterns
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Coplien & Harris, Organizational Patterns
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Organizational Patterns 

 Big dripping hairball 

 Senior designer 

 Chief architect 

 Architecture team 

 Architecture control board 
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In conclusion 
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Things You Can Do With Old Software 

 Give it away 

  Ignore it 

 Put it on life support 

 Rewrite it 

 Harvest from it 

 Wrap it up 

 Transform it 

 Preserve it 
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Things You Can Do With An Architecture 

 Reason about its transformation 
– Evolution, rapid reaction, modernization, merging, 

acquisition, divestiture 

 Asset identification and repurposing 
– Product line 

– Strategic thrust 
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Grady Booch, IBM Fellow 
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