
© 2009 IBM Corporation

Architectural Governance

Grady Booch
IBM Fellow

1

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Outline

 The context for architecture

 Architecture defined

 Representing architecture

 Architectural governance

 Organizational best practices

2

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

The context for architecture

3

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 4

Forces in software

Technology churn

Scalability

Performance

Capacity

Fail safe/Fault tolerance

Reliability/Availability

Security

Functionality
Cost/Schedule Compatibility

Resilience

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 5

The limits of technology
  The laws of physics

  The laws of software

  The challenge of algorithms

  The difficulty of distribution

  The problems of design

  The importance of organization

  The impact of economics

  The influence of politics

  The limits of human imagination

Fundamental

Human

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Physical systems

  Mature physical systems have stable architectures
–  Aircraft, cars, and ships
–  Bridges and buildings

  Such architectures have grown over long periods of time
–  Trial-and-error
–  Reuse and refinement of proven solutions
–  Quantitative evaluation with analytical methods

  Mature domains are dominated by engineering efforts
–  Analytical engineering methods
–  New materials
–  New manufacturing processes

6

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Software-intensive systems

 A system in which software is the dominant,
essential, and indispensable element
– E-commerce system
–  IT (business) system
– Telephone switch
– Flight control system
– Real-time control system (e.g. industrial robot)
– Sophisticated weapons system
– Software development tools
– System software (e.g. operating systems or compilers)

7

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architecting software is different

 No equivalent laws of physics

 Transparency

 Complexity
– Combinatorial explosion of state space
– Non-continuous behavior

– Systemic issues

 Requirement and technology churn

 Low replication and distribution costs

8

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 9

Misconceptions about architecture

  Architecture is just paper
  Architecture and design are the same things
  Architecture and infrastructure are the same things
  <my favorite technology> is the architecture
  A good architecture is the work of a single architect
  Architecture is simply structure
  Architecture can be represented in a single blueprint
  System architecture precedes software architecture
  Architecture cannot be measured or validated
  Architecture is a science
  Architecture is an art

Kruchten

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architecture defined

10

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 11

Architecture defined (very informally)

 Software architecture is what software architects
do

Beck

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Software architecture (more formally)

“The software architecture of a program or
computing system is the structure or structures of
the system, which comprise the software elements,
the externally visible properties of those elements,
and the relationships among them.”

Bass/Clements/Kazman, Software Architecture in Practice

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architecture defined (operational)

 All architecture is design; not all design is
architecture. A system’s architecture is defined by
its significant design decisions (where
“significant” is measured by the cost of change).

 Every software-intensive system has an
architecture, forged from the hundreds of
thousands of small decisions made every day.

 The code is the truth, but not the whole truth:
most architectural information is preserved in
tribal memory.

13

Booch

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

An Classic Analogy

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

A Fresh Analogy (A Snapshot In Time)

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

A Fresh Analogy (A Broader Expanse)

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Therefore

 The architecture of an enterprise’s software
intensive systems is akin to the instantaneous
structure and behavior of a river

 The lifecycle of that architecture is akin to the
intentional and accidental morphing of those
instantaneous architctures over a region of time.

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Representing architecture

18

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Views and documentation

  Architecture documentation is an essential governance
artifact

  An architecture is a multidimensional construct,
too involved to be seen all at once

  Systems are composed of many structures
–  Design-time concerns – showing modules, their composition/

decomposition and mapping to code units; how teams cooperate
to build the system; …

–  Run-time concerns - processes and how they synchronize;
programs and how they call or send data to each other; how
components and connectors work; …

–  Software in its environment - how software is deployed on
hardware; network connections and ports;…

  A view is a representation of a structure. We use views to
manage complexity by separating concerns

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

View-based documentation

Views give us our basic principle of architecture
documentation

SEI

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Adapting views

 Not all systems require all views
– Single process (ignore process view)

– Small program (ignore implementation view)

– Single processor (ignore deployment view)

 Some systems require additional views
– Data view

– Security view

– Other aspects

21

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Cross functional mechanisms

 Some structures and behaviors crosscut
components

•  Security
•  Concurrency
•  Caching
•  Persistence

 Such elements usually appear as small code
fragments sprinkled throughout a system

 Such elements are hard to localize using
traditional approaches

22

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Alternate model view frameworks

23

• ToGAF

• DoDAF

• MoDAF

• NAF

• NAE

• Zachman

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 24

Representing software architecture

Logical View

End-user
Functionality

Implementation View

Programmers
Configuration management

Process View

Performance
Scalability
Throughput

System integrators
Deployment View

System topology
Communication

Provisioning

System engineering

Conceptual Physical

Use Case View

Kruchen, 4+1 Model View

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architectural governance

25

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 26

Focus over time
Discovery Invention

Focus

Implementation

Selic

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

The Enterprise Architecture Lifecycle

 Phases
–  Inception

– Elaboration

– Construction

– Transition

 But also
– Evolution

– Operation

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

The Enterprise Architecture Lifecycle

  In my experience
– All hyperproductive organizations tend to have a lifecycle

that involves the growth of a system’s architecture
through the incremental and iterative release of testable
executables.

 Not one lifecycle, but many
– Different stages of execution, maturation, and quality

– Harmony, resonance, and cacaphony

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Process best practices

 Grow the architecture of a system through the
incremental and iterative release of testable
executables
– Focus on executables

–  Incremental and iterative progress

– Architecture as artifact

29

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Process best practices

  Attack major risks early and continuously or else they
will attack you

  Ensure that you deliver value to your customer
  Have a maniacal focus on working software
  Accommodate change early in the project
  Baseline an executable architecture early on
  Build your system with components
 Work closely together as one team
 Make quality a way of life, not an afterthought

30

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architecture as an artifact of governance

 Development takes place at two levels:
architecture and implementation
– Both are ongoing, and they interact with each other

strongly. New implementations suggest architectural
changes. Architectural changes usually require radical
changes to the implementation.

Coplien & Harris, Organizational Patterns

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 32

The soul of an architecture is found
in its mechanisms that cut across the components

of the system, thus yielding its essential
structures and behaviors

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Architecture as artifact

 Vehicle for communication among stakeholders

 Reasoning about an evolving system

  Intentional transformation

 Mechanism for attacking risk

 Accountability

 Preservation of tribal memory

33

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 34

Architectural governance maturity

Ross et al, Enterprise Architecture as Strategy

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Organizational best practices

35

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Coplien & Harris, Organizational Patterns

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Coplien & Harris, Organizational Patterns

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Organizational Patterns

 Big dripping hairball

 Senior designer

 Chief architect

 Architecture team

 Architecture control board

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

In conclusion

39

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Things You Can Do With Old Software

 Give it away

  Ignore it

 Put it on life support

 Rewrite it

 Harvest from it

 Wrap it up

 Transform it

 Preserve it

IBM Research/Software Engineering Institute

© 2009 IBM Corporation

Things You Can Do With An Architecture

 Reason about its transformation
– Evolution, rapid reaction, modernization, merging,

acquisition, divestiture

 Asset identification and repurposing
– Product line

– Strategic thrust

IBM Research/Software Engineering Institute

© 2009 IBM Corporation 42

Grady Booch, IBM Fellow
gbooch@us.ibm.com

http://www.handbookofsoftwarearchitecture.com

