
A premier aerospace and defense company

1

OpCentricTM

“A new class of data intensive
network tools”

June 2, 2009
Grant K. Holcomb

Flight System Software Lead
ATK Launch Systems

Grant.Holcomb@ATK.com

A premier aerospace and defense company

2

Introduction

C++ Object
struct Person {

Person();

std::string mFirstName;
std::string mLastName;
int mAge;
bool mEmployee;

};

OpCentric C++ Object
struct Person : public GNode {

Person();

StringValue mFirstName;
StringValue
mLastName;
IntegerValue mAge;
BooleanValue
mEmployee;

};Inherent and Supported Functionality C++ Object OpCentric C++ Object
Remote Discovery NO YES
Remote Instantiation NO YES
Remote Modification NO YES
Remote Change Notification NO YES
Metadata Formatted Persistence & Signaling NO YES
Hierarchical Data Modeling NO YES
Distributed Data Modeling NO YES
Redundant Data Modeling NO YES

A premier aerospace and defense company

3

What is OpCentric?

OpCentric is a software development platform engineered
for rapidly building network-centric solutions that require
the following properties:
•Real-time performance

•Ability to deliver, integrate and manage a highly scalable number, type
and format of data streams simultaneously

•Ability to manage a highly scalable numbers of users, devices, and data
providers and consumers (e.g. sensors, actuators, databases, etc.)

•Reliable and robust communications and information sharing through
distributed and redundant network processes

•Dynamic discovery, instantiation, monitoring and control of remote
processes

•Interoperability between dissimilar technologies

•Many-to-many collaborative information sharing services

A premier aerospace and defense company

4

Implementation Details

From a software developers perspective, OpCentric
consists of the following:
•Static Library - Built from a project of less 400,000 lines of source code and less
than 300 C++ Classes (Embedded version significantly smaller)
•Software Developer’s Kit (SDK) – Integrated Development Environment (IDE),
Compiler, Linker and Debugger
•Application Programming Interface (API) – Comprehensive presentation of
every class, method and member variable in the OpCentric library
•Sample Code Archive – Comprehensive collection of working applications from
which working code can be extracted
•Tutorial – A step by step tutorial based on sample code that guides a programmer
from OpCentric basics to advanced network-centric functionality
•Style Guide – A programmer’s style guide for deliverable reliable solutions within
a standard C++ environment
•Getting Started Guide – A basic introduction to OpCentric for programmers
•Interface Builder – A rapid development tool that allows comprehensive solutions
to be created by dragging, dropping and connecting OpCentric objects

A premier aerospace and defense company

5

Portable

OpCentric was written using the
ISO/ANSI C++ programming language
because (1) it facilitates the highest
possible performance, (2) the global
availability of skilled labor, (3) reflects
three decades of maturity, and (4) the
overwhelming majority of microprocessors
have a C++ compiler and run time
mechanism.

A premier aerospace and defense company

6

Advanced Code Reuse

Through a single C++ base class called GNode and a
mature set of abstractions, OpCentric encourages the
highest level of code reuse, which facilitates:
•Measurably robust and reliable operations

•Simpler and faster bug fixes and optimizations

•Even small changes and improvements propagate instantly to
all applicable functionality

•Testing, verification, and validation are more economical and
can be automated

•New functionality can be added faster due to much lower
architectural complexity

A premier aerospace and defense company

7

Small Footprint and High Performance

The OpCentric code base was written to
minimize the consumption of processor
and memory resources while operating at
the highest possible performance
supported by a host computing device.

A premier aerospace and defense company

8

Network Topology Independent

The OpCentric software objects have been
engineered to hide the complexity of building
robust and secure network based solutions.

OpCentric can support any serial or packet
based communications architecture (Ethernet,
ATM, USB, CANBus, SpaceWire, FireWire,
etc.)

A premier aerospace and defense company

9

Platform Independent

OpCentric has no dependency on
proprietary functionality provided by
microprocessors, operating systems,
computing platforms, or memory, storage,
bus, or network technologies.

Through clean abstraction layers, only
hardware interface drivers are required to
support current or future platforms.

A premier aerospace and defense company

10

Embedded Operations

OpCentric can operate under any
embedded OS with an ISO/ANSI C++
runtime environment. A majority of
OpCentric functionality operates under
EC++ (Embedded C++).

Additionally, the OpCentric library is
comprehensive in nature and does not
require an operating system for
embedded operations.

A premier aerospace and defense company

11

Asynchronous Signaling

Using OpCentric’s GNode base class, all OpCentric objects
inherit a common, high-performance, simplified signaling
mechanism that operates asynchronously in a measurable
constant amount of time (deterministic). The instant the state of
an object changes, all remote listening objects are instantly
notified in a known amount of time.

Measureable signal execution times facilitate the engineering
analysis necessary to determine the number of signals that can
be supported simultaneously over a given network architecture.
This implies that the scalability of the network devices and
processes that can be supported at the same time is only
limited by the capacity of the network.

A premier aerospace and defense company

12

Data Driven Architecture

The OpCentric GNode asynchronous signaling mechanism
uses XML as its message format. When a remote listening
object on a network receives a signal, it will receive a packet
with an XML payload. When combined with the other
characteristics of the GNode base class, XML messages can
accomplish the following:

•Instantiate – Runtime creation of an object in memory
•Configure – Change an object’s variable values
•Persist – Write an object to data storage in an XML format
•Control – Execute any object’s methods (functions)
•Monitor – Receive notification of any object’s changes

A premier aerospace and defense company

13

Advanced Data Modeling

Through the GNode base class, all OpCentric objects share a
common mechanism for building complex data models (data
structures, protocols, process flow, workflow, etc.).

The network-centric, recursive, thread-safe
GNode base class implementation supports the
rapid creation of lists, trees, graphs, and cyclic
graphs of GNode-based objects of any type,
purpose, combination, complexity, and network
distribution.

Combined with the integrated metadata
formatted asynchronous signaling mechanism,
any model can be simulated to any degree as
required for design test, verification, and
validation (integrated simulation and QA).

A premier aerospace and defense company

14

Journaling (Integrated Feedback Loop)

As a result of the unified signaling architecture, GNode
metadata signals can be recorded and analyzed in a highly
automated fashion. In the OpCentric architecture, a recording
of these signals is called a “Journal”. A Journal represents a
system-wide feedback loop that facilitates the following:

•Trend Analysis and Security – Automated journal analysis can surface
unanticipated trends or patterns, particularly by users, which can drive
changes to security policy

•Performance Analysis – Process timing/frequency is measurable

•Systems Reliability – Failures can be identified and responded to

•Simulations – Journals can be modified and played back into a system
representing an integrated simulation capability (symmetrical)

A premier aerospace and defense company

15

Protocol Unification

Over the public Internet every service type uses a different protocol, with
many competing protocols for similar services. Through significant research
over the past decade, OpCentric has been used to implement and integrate
the following processes and services through a single protocol abstraction:

• Presence
• Session Management
• Persistence
• Revisioning
• File Sharing
• Media Sharing
• Screen Sharing
• Application Sharing
• Collaboration
• Instant Messaging
• Chat
• Audio Conferencing
• Video Conferencing
• Surveillance
• Workflow Management

By combining (1) metadata formatted
asynchronous signaling, (2) advanced data
modeling, and (3) identifying the pattern of
what is in common to all current IP protocols, it
can now be demonstrated that a common
base protocol can be extended in an infinite
fashion for implementing any conceivable IP-
based service with vastly greater efficiency.
The OpCentric unified protocol development
approach is a technique that allows an
unlimited number of protocols to coexist over a
single connection to radically simplify client
server architectures for any purpose.

A premier aerospace and defense company

16

Packet and Protocol Stack Management

The following is a Voice over IP (VoIP) protocol stack:

OpCentric can control nested IP packet protocols to a level necessary to
meet specific real-time performance implementation needs:

Accurately measure transmission
bandwidth, latency, and jitter

Dynamically switch between UDP and
TCP protocols

Dynamically change port number and
other key IP packet header parameters

Dynamically vary packet payload size
Reliably reassemble raw data stream

for playback, recording, and analysis

Precisely manage flow and rate control
Merge peer-to-peer IP streams into a

group session
Merge IP stream group sessions
Stop/Start an IP stream under

decentralized policy control
Continuously maintain a count of

transmitted and received packets by any
required IP parameter value

	Slide Number 1
	Introduction
	What is OpCentric?
	Implementation Details
	Portable
	Advanced Code Reuse
	Small Footprint and High Performance
	Network Topology Independent
	Platform Independent
	Embedded Operations
	Asynchronous Signaling
	Data Driven Architecture
	Advanced Data Modeling
	Journaling (Integrated Feedback Loop)
	Protocol Unification
	Packet and Protocol Stack Management

