Modeling an Acquisition Decision-Making Process for the FAA NextGen Systems of Systems
Presented to: NDIA 2012
By:
Dr. Mark R. Blackburn
Dr. Art Pyster
Dr. Robin Dillon-Merrill
Dr. Teresa Zigh
Dr. Richard Turner
• Part 1:
 — What is the Federal Aviation Administration’s (FAA) NextGen
 — Who are the stakeholders?

• Part 2:
 — Problem using FAA NextGen System of Systems (SoS) Terminology

• Part 3:
 — Objective, conceptual approach, & expected analysis outputs
 — Bayesian networks concept and visualizing risks
 — Scenario for using the Analysis and Modeling Framework for Asynchronous Integration and Deployment (AMF4AID)

• Conclusions

• Acknowledgment
Part 1:
What is NextGen and who are the Stakeholders?
What is the FAA NextGen?
NextGen Vision of Integrated Framework of SoS Operations

Cross-Cutting Factors
- Environmental
- Safety
- Information Security
- Economic
- International
- Regulation

Legend:
- Private Sector
- FAA (USG)
- Local entities

Enablers
- People
- Procedures
- Technology
- Data/Information
- Policy

Image credit: Ron Stroup, Chief Systems Engineer for Air-Ground Integration

© Mark R. Blackburn, Ph.D.
“Wicked” problems are bewilderingly complex and have far-reaching implications for large numbers of very different stakeholder groups, each with competing interests. [Rittel 1972]
We Talked to Many Stakeholders about Various Aspects of the System of System (SoS)

• We started with FAA’s Assistant Administrator for NextGen, Vicki Cox (our research sponsor)

• After talking with more than 60 success-critical stakeholders, who were very open about the challenges, we found out that:
 — All component dependencies are not systematically identified
 — All interface dependencies are not formally tracked (e.g., using databases)
 — Tradeoff impacts difficult to assess
 — People can only roughly estimate impact of interdependencies between component functionality
 — Difficulty continually challenges those responsible for planning, developing, and deploying capabilities

Mind Map of ~60 Stakeholders and Areas of Expertise
Part 2: Problem using FAA NextGen SoS Terminology
FAA NextGen Rolls Out Capabilities to SoS

• Capabilities cut across programs, domains, and time

<table>
<thead>
<tr>
<th>Solution Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trajectory Based Operations (TBO)</td>
</tr>
<tr>
<td>High Density Arrivals/Departures (HD)</td>
</tr>
<tr>
<td>Flexible Terminals and Airports (FLEX)</td>
</tr>
<tr>
<td>Collaborative ATM (CATM)</td>
</tr>
<tr>
<td>Reduce Weather Impact (RWI)</td>
</tr>
<tr>
<td>System Network Facilities (FAC)</td>
</tr>
<tr>
<td>Safety, Security and Environment (SSE)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transformational Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Dependent Surveillance Broadcast (ADS-B)</td>
</tr>
<tr>
<td>System Wide Information Management (SWIM)</td>
</tr>
<tr>
<td>Data Communications</td>
</tr>
<tr>
<td>NextGen Network Enabled Weather (NNEW)</td>
</tr>
<tr>
<td>NAS Voice Switch (NVS)</td>
</tr>
<tr>
<td>Collaborative Air Traffic Management Technologies (CATM-T)</td>
</tr>
</tbody>
</table>
Example Capability Mapping to Programs and Decision Points

Sample OI/Capability to Sub-capability to Infrastructure Roadmaps Mapping

Solution Set Capabilities / OIs

- Separation reduction - 50 longitudinal miles in Anchorage Oceanic airspace
- 50 nmi Lateral Separation in WATRS
- ADS-B in Gulf of Mexico

Sub-Capabilities

- Reduced Oceanic Separation - 3 miles
- Etc.

Infrastructure Roadmap

Automation Roadmap (1 of 2)

Programs

Ops Benefits

Functions

Initiate Trajectory Based Operations

Tactical Trajectory Management

NextGen Oceanic Procedures

Separation Management

Image credit: FAA NAS Enterprise Architecture Federal Aviation Administration, Jesse Wijnjtes / NAS Chief Architect April 28, 2010
To Realize Benefits the Transformation Requires Integration Across Domains

What’s so Challenging?

Success *only* occurs here.

Example of Program Dependencies for Capability

Inspired by Ron Stroup, Chief Systems Engineer for Air-Ground Integration

© Mark R. Blackburn, Ph.D.
Objective Statement from Kickoff Meeting

- Develop a modeling and analysis framework to enable a process for managing decision-making that occurs when capabilities must be integrated, deployed and acquired asynchronously
 - Analysis and Modeling Framework for Asynchronous Integration and Deployment (AMF4AID)
 - Predictive Model for Estimating Cost, Schedule, Benefits, with Visualizations of Probabilistic Risk to aid in decision making

Which capability?
• NextGen is being implemented through a time-phased series of Operational Improvements (OI), each of which is broken down into a series of OI Increments (aka Functions)

• Acquisition of each Function is defined in a “scenario” that has a predicted cost, schedule, benefit, and risk

• In practice, scenarios don’t play out as originally planned
 — E.g., technologies mature more slowly than expected

• Scenarios often have multiple dependencies
 — It is often difficult to understand the relationships between scenarios
 — Even more difficult to understand implications of changing one or more scenarios

• This research will develop a model that helps decision makers better understand the relationships between scenarios and to better predict the effect of changing them
 — This should aid in their selection of the best series of scenarios to implement capabilities
• Need to deploy capabilities within cost/schedule limits

• Complexity and scale of problems often negatively impacts meeting targets

• Model allows decision maker to improve prediction of cost and schedule

• Goal: allow decision makers to better understand alternative for desired outcome earlier

Data points represent **Duration (schedule time) or Cost** to produce a capability

Reduce variance

Goal: Improve early decisions

© Mark R. Blackburn, Ph.D.
Framework Predicts Risk using Bayesian Networks That Combine Quantitative and Qualitative Data

• Bayesian networks combine quantitative with qualitative expert judgment to capture and leverage causal relationships about “Peoples’ internal knowledge that is not captured externally or formally”

• Tooling for framework provides probabilistic representation of cost, schedule and benefit risks that enable stakeholders to make better decisions

The probability of completing the function (associated with orange line) in fewer days is better than for blue or purple (less risk)

© Mark R. Blackburn, Ph.D.
Map the Probabilistic Representation of Risk based on Program Factors to Risk Matrix

The probability of completing the function (associated with orange line) in fewer days is better than for blue or purple (less risk)

Different Points Along the x-Axis Map to Risk Values Associated with Meeting Schedule

Schedule Time/Duration (about 360 day)
Researching How Models Align with I2I Process to Calculate Various Aspects of Risk

Enterprise Risk Management

I2I – Phase 2

I2I – Phase 3

I2I – Phase 4

Analysis and Modeling Framework

FAA Ideas-to-In Service (I2I) Process

Phase 2
Service Analysis

Phase 3
CRD, Solution Development & Commitment

Phase 4
Solution Implementation

© Mark R. Blackburn, Ph.D.
Conceptual Usage Scenario Illustrating Cost, Schedule, Benefit, and Risk Tradeoffs

Factors

Interdependence
- Low: 100%
- Medium: 100%
- High: 100%

Size

Collaboration Factor

Budget Impact

KPA

Complexity Factors

Historical Time Factored

Historical Cost Factored

Performance Factor

Conceptual

Quantitative Inputs

Engineer Expertise

Engineer Availability

Delivery Confidence

Solution Development Time

Upper Percentile (99.0) Value: 299.54

Solution Development Cost

Expected Performance

© Mark R. Blackburn, Ph.D.
Conclusions

• NextGen is a complex System of Systems and rolling out capabilities is challenging due to many factors and complex interdependencies and diverse set of stakeholders

• We are developing a modeling and analysis framework to enable a process for managing decision-making

• Framework helps stakeholders understand cost, schedule, benefits, and risk tradeoffs

• Approach will improve the accuracy of schedule and cost predictions (and reduce the variance)

• Bayesian networks combine quantitative with qualitative expert judgment to capture and leverage causal relationships about “Peoples’ internal knowledge that is not captured externally or formally”
• We wish to acknowledge the great support of the FAA sponsors and stakeholders, including stakeholders from NASA, JPDO and other industry partners that have been very helpful and open about the challenges of this complex problem.

• We also want to thank Dr. Bill Kaliardos from the FAA who provided excellent comments that helped us improve this presentation especially for people not familiar with the FAA.
• For more information contact:
 — Mark R. Blackburn, Ph.D.
 — Mark.Blackburn@stevens.edu
 — 703.431.4463
Scenario for Conceptual Bayesian Network

For example, consider the following conceptual scenario. There are three programs competing for funding in an acquisition cycle (yearly). There are three program managers, Karen, John and Sally (hypothetical).

1) For each of the qualitative factors, Karen, John, and Sally assign subjective values to the factors.

The capability interdependencies (Interdependence) for Karen’s program is Low, John’s is Medium, and Sally’s is High. This means for example that Karen’s program is not very dependent on the completion of other systems or components in order to complete the integration and deployment of the program, which might be developed by another program, and therefore the risk is lower for this program than for John’s and Sally’s program.

The Collaboration Factor for Karen and John’s program is Low, and High for Sally’s program. This factor reflects that Sally must coordinate with other programs in order for the functionality of her program to be realized, and therefore this increases the risk for completing the integration and deployment of Sally’s program.

The Engineering Expertise and Engineering Availability factors can represent both the Expertise and Availability of the contractors that will develop a particular program. Availability can reflect both the resource availability and capacity (e.g., the contractor is already developing a large software project this year, which might mean their availability for more development is Low).

2) The qualitative factors are combined with quantitative historical factors to give a probabilistic representation of cost, schedule and performance risk. For example:

Based on historical schedule data (in days), assuming a normal (or Gaussian) distribution (which may not apply), the mean number of days to complete Karen’s program is about 125 days, with a near 99% belief that it will be completed in 299 days (highlighted vertical Orange Line), while the mean is about 200 days for John’s and Karen’s programs, but to achieve 99% confidence it could take as long as 400 days. Given a yearly acquisition cycle, the lower risk program, based on schedule, is Karen’s program.

Based on historical cost data (using hypothetical $K dollars), the mean cost to complete the program is: Karen ($118K), John ($178K), and Sally ($206K).

Based on projected performance (no particular units assumed in this example, because performance value could be exponential), the Key Performance Areas (KPA) for Sally’s program is Very High, John’s is High and Karen’s is Low. There are other possible measures with causal relationships to performance, such as budget (Budget Impacts) required to complete the program, and the resulting relative performance for John’s program is 71, Sally’s is about 100, and Karen’s is about 150 (i.e., benefit to the DoD mission).

3) Based on this analysis, there are several possible conclusions, but a likely choice is:

Karen’s program delivers the most performance benefit relative to the schedule risk, with only slightly higher cost than John’s program

4) If the PMs or other stakeholders do not agree to the risk-based representation of the cost, schedule, and performance risk tradeoffs (e.g., the General insists that John’s or Sally’s program be deployed), then the stakeholders have the ability to look at modifying program decisions associated with the factors. A “what if” analysis could be performed while the stakeholders are together.
Bayesian Networks (aka Bayesian Belief Networks) describe relationships between causes and effects.

BNs are represented as a directed graph modeling conditional dependencies.

Nodes represent variables.

Arcs represent causal relationships between variables.

Simple Bayesian Net

Directed Causal Graph

- **Root node** (aka parent)
- **Non-root node**
Calculated Values are Derived through Bayes’ Theorem

- Node Probability Table (NPT) express conditional probability of node states

Node Probability Table values

Calculated values
• For example: entering observation, a **CAD Error**, about historical observations or future possibilities provides information about the risk probabilities such as:
 — This increases the calculated probability that it will be Manufactured Late and/or the Supplier Late
 — This provides additional information for decision making and risk management

From NPT Values Only

Observation