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Part 1:
What is NextGen and
who are the Stakeholders?
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NextGen Has a Diverse Set of Stakeholders
~rassaren Gonter that Contribute to and Impact Decisions

Aerospace Transformation Environment
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“Wicked” problems are bewilderingly complex and
have far-reaching implications for large numbers of
very different stakeholder groups, each with
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We Talked to Many Stakeholders about
Creseencee - \/arious Aspects of the System of System (SoS)

e We started with FAA’s Assistant Administrator for NextGen,
Vicki Cox (our research sponsor)

e After talking with more than 60 success-critical stakeholders, who
were very open about the challenges, we found out that:

—All component dependencies
are not systematically identified — o P B

—All interface dependencies are not
formally tracked (e.g., using databases)

—Tradeoff impacts difficult to assess

Mind Map of
—People can only roughly estimate - ~60 Stakeholders

impact of interdependencies between == | and

: o e Areas of Expertise
component functionality ;‘

—Difficulty continually challenges CEE
those responsible for planning, |
developing, and deploying capabilities —
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Part 2:
Problem
using
FAA NextGen SoS Terminology
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SYSTENS ENGINEERING FAA NextGen Rolls Out Capabilities to SoS
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e Capabilities cut across programs, domains, and time

Solution Sets

Trajectory Based Operations (TBO)

High Density Arrivals/Departures (HD)

Flexible Terminals and Airports (FLEX)

Collaborative ATM (CATM)

Reduce Weather Impact (RWI)

System Network Facilities (FAC)

Safety, Security and Environment
(SSE)

Capabilities

Transformational Programs

)

Automatic Dependent Surveillance
Broadcast (ADS-B)

System Wide Information
Management (SWIM)

Data Communications

NextGen Network Enabled Weather
(NNEW)

NAS Voice Switch (NVS)

Collaborative Air Traffic Management
Technologies (CATM-T)
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Example Capability Mapping to
Programs and Decision Points

Sample Ol/Capability to Sub-capability to Infrastructure Roadmaps Mapping
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To Realize Benefits the Transformation
Requires Integration Across Domains

Navigation
rvice Provide

nfrastructure

Inspired by Ron Stroup,
Chief Systems Engineer for Air-Ground Integration

What’s so Challenging?

Success only occurs here.
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(ADS-B)

ystem Wic
nformatic

Example of Program Dependencies
for Capability

© Mark R. Blackburn, Ph.D. 11



eeeeeeeeeeeeee

Part 3:
Obijective,
Conceptual Approach,
Expected Analysis Outputs
&
Analysis and Modeling
Framework for Asynchronous
Integration and Deployment (AMF4AID)



VSTENS EGINEERNG Objective Statement from Kickoff Meeting

Research Center

e Develop a modeling and analysis framework to enable a process for managing
decision-making that occurs when capabilities must be integrated, deployed
and acquired asynchronously

—Analysis and Modeling Framework for Asynchronous Integration and
Deployment (AMF4AID)

—Predictive Model for Estimating Cost, Schedule, Benefits, with
Visualizations of Probabilistic Risk to aid in decision making

_ Cost, Schedule, & Benefit
predictions

Modeling Framework
for Decision Making at

Enterprise Levels

— Risk calculations —

Quantitative | Qualitative — Factor impacts on practices

Which capability?

_ Support Ideas-to-In Service

T eliproces
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e NextGen is being implemented through a time-phased series of
Operational Improvements (Ol), each of which is broken down into a
series of Ol Increments (aka Functions)

e Acquisition of each Function is defined in a “scenario” that has a
predicted cost, schedule, benefit, and risk

* |n practice, scenarios don’t play out as originally planned
—E.g., technologies mature more slowly than expected

e Scenarios often have multiple dependencies

— It is often difficult to understand the relationships between scenarios
—Even more difficult to understand implications of changing one or more scenarios

e This research will develop a model that helps decision makers better
understand the relationships between scenarios and to better predict
the effect of changing them

—This should aid in their selection of the best series of scenarios to implement
capabilities

© Mark R. Blackburn, Ph.D. 14



Conceptual Objective for our
" hessarch tontar Research and Model

e Need to deploy capabilities within cost/schedule limits
e Complexity and scale of problems often negatively impacts meeting targets
e Model allows decision maker to improve prediction of cost and schedule

e Goal: allow decision makers to better understand alternative for desired
outcome earlier

Data points represent Duration (schedule time) or Cost to produce a capability

P A \\ ',:' "\ Red
o ., I, o 0 o° “’ y e uce
Al UM 'f\ N\ / e \ K o, variance $

Goal: Improve
early decisions

Duration (schedule time) or Cost

Calendar Time
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Framework Predicts Risk using Bayesian Networks
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That Combine Quantitative and Qualitative Data

e Bayesian networks combine quantitative with qualitative expert
judgment to capture and leverage causal relationships about
“Peoples’ internal knowledge that is not captured externally or

formally”

e Tooling for framework provides probabilistic representation of
cost, schedule and benefit risks that enable stakeholders to make

better decisions
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Map the Probabilistic Representation of Risk
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based on Program Factors to Risk Matrix
Risk Matrix
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Researching How Models Align with 12I
Cesecner - Process to Calculate Various Aspects of Risk

Risk Matrix
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Conceptual Usage Scenario lllustrating Cost,
Schedule, Benefit, and Risk Tradeoffs
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e NextGen is a complex System of Systems and rolling out
capabilities is challenging due to many factors and complex
interdependencies and diverse set of stakeholders

e We are developing a modeling and analysis framework to enable
a process for managing decision-making

e Framework helps stakeholders understand cost, schedule,
benefits, and risk tradeoffs

e Approach will improve the accuracy of schedule and cost
predictions (and reduce the variance)

e Bayesian networks combine quantitative with qualitative expert
judgment to capture and leverage causal relationships about
“Peoples’ internal knowledge that is not captured externally or
formal |y” © Mark R. Blackburn, Ph.D. 20
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For example, consider the following conceptual scenario. There are three programs competing for funding in an acquisition cycle
(yearly). There are three program managers, Karen, John and Sally (hypothetical).

1) For each of the qualitative factors, Karen, John, and Sally assign subjective values to the factors.

The capability interdependencies (Interdependence) for Karen’s program is Low, John’s is Medium, and Sally’s is High. This means for
example that Karen’s program is not very dependent on the completion of other systems or components in order to complete the
integration and deployment of the program, which might be developed by another program, and therefore the risk is lower for this
program than for John’s and Sally’s program.

The Collaboration Factor for Karen and John’s program is Low, and High for Sally’s program. This factor reflects that Sally must
coordinate with other programs in order for the functionality of her program to be realized, and therefore this increases the risk for
completing the integration and deployment of Sally’s program.

The Engineering Expertise and Engineering Availability factors can represents both the Expertise and Availability of the contractors that
will develop a particular program. Availability can reflect both the resource availability and capacity (e.g., the contractor is already
developing a large software project this year, which might mean their availability for more development is Low).

2) The qualitative factors are combined with quantitative historical factors to give a probabilistic representation of cost, schedule and
performance risk. For example:

Based on historical schedule data (in days), assuming a normal (or Gaussian2 distribution (which may not apply), the mean number of
days to complete Karen’s program is about 125 days, with a near 99% belief that it will be completed in 299 days (highl(ijghted vertical
Orange LineE while the mean is about 200 days for John’s and Karen’s programs, but to achieve 99% confidence it could take as long as
400 days. Given a yearly acquisition cycle, the lower risk program, based on schedule, is Karen’s program.

Based on historical cost data (using hypothetical $K dollars), the mean cost to complete the program is: Karen (5118K), John ($178K),
and Sally (5206K).

Based on projected performance (no particular units assumed in this example, because performance value could be exr)onential), the
Key Performance Areas (KPA) for Sally’s program is Very High, John’s is High and Karen’s is Low. There are other possible measures with
causal relationships to performance, such as budEet (Budget Impacts) required to complete the program, and the resulting relative
performance for John’s program is 71, Sally’s is about 100, and Karen’s is about 150 (i.e., benefit to the DoD mission).

3) Based on this analysis, there are several possible conclusions, but a likely choice is:

Karen’s program delivers the most performance benefit relative to the schedule risk, with only slightly higher cost than John’s program
4) If the PMs or other stakeholders do not agree to the risk-based representation of the cost, schedule, and performance risk tradeoffs

(e.g., the General insists that John’s or Sally’s program be deployed), then the stakeholders have the ability to look at modifying program
decisions associated with the factors. A “what if” analysis could be performed while the stakeholders are together.

© Mark R. Blackburn, Ph.D. 23
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e Bayesian Networks (aka Bayesian Belief Networks) describe
relationships between causes and effects

e BNs are represented as a directed graph modeling conditional
dependencies

e Nodes represent variables

e Arcs represent causal relationships between variables

PO Late € Root node
(aka parent)

Simple Bayesian Net
Directed Causal Graph

Manutactured supplier Late | ¢—— Non-root node

© Mark R. Blackburn, Ph.D. 24



Calculated Values are Derived
through Bayes’ Theorem
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e Node Probability Table (NPT) express conditional probability of
node states

“2 CAD Error

. CAD Error PO Late

— Node Probability Table

3

False

0.9

True

0.1

T

Node Probability
Table values

g False 90% False 95%
NPT Editing Mode ................ Manual
Node Probability Table True 4| 10% True 4 5%

l

Manufactured Late

l

N

False 88.5%
True 4| 11.5%

Supplier Late

False 90.225%
True 4| 9.775%

Calculated
values

‘2 Manbfactured Late

[? “  Node Probability Table
NPT Edlting Mode ............. | Manual v
MNode Details

E CAD Error False True
L False 0.95 0.3

True 0.05 0.7
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Adding Known or Observed Information
Changes the Calculated Probabilities
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e For example: entering observation, a CAD Error, about historical
observations or future possibilities provides information about
the risk probabilities such as:

—This increases the calculated probability that it will be Manufactured Late
and/or the Supplier Late

—This provides additional information for decision making and risk
management

From NPT Values Only Observation

CAD Error

False 90%
True 4 10%

l

Manufactured Late

N

PO Late

False 95%
True 4 5%

CAD Error

False

True

J,

Scenario 1 : True |

v

False 88.5%
True 4 11.5%

Supplier Late

Manufactured Late

False 90.225%
True 4| 9.775%

False

True

30%
70%
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