
Designing for Adaptability and evolutioN in
System of systems Engineering

Honourcode, Inc.
Eric Honour
+1 (615) 614-1109
ehonour@hcode.com

An Effective, Tool-Supported
Methodology for SoS

Engineering in Europe
Near-final results from the three-year

DANSE project.

October 2014 1

mailto:ehonour@hcode.com

Honourcode, Inc.

Agenda

 Systems of systems concepts
 DANSE methodology
 Solution methods
 DANSE tools
 Implementation

DANSE Methodology Training 2

DANSE
Methodology

Integrated Water
Treatment and Supply

Air Traffic
Management

Automated
Ground Transport

Emergency
Response

Designing for Adaptability and evolutioN in
System of systems Engineering

Honourcode, Inc.

Systems of Systems Concepts
What does DANSE mean by a system of
systems?
To what kinds of projects does this
methodology apply?

Systems of Systems Concepts 3

Honourcode, Inc.

SoS

control
constit.
system

subsys
subsys
subsys
subsys

source info services

Architecture of an SoS

Constituent systems
 Independently operated and

managed
 Gather/receive source info
 Perform services
 Interact

System of systems
 Provides emergent services through

system interactions

Systems of Systems Concepts

constit.
system

subsys
subsys

subsys
subsys

source info services

constit.
system

subsys
subsys

subsys
subsys

source info services

constit.
system

subsys
subsys

subsys
subsys

source info services

constit.
system

subsys
subsys

subsys
subsys

source info services

source info

services

Evolution
sys

model
sys

model

SoS
model

DANSE partners
business opportunities

 Can be modeled May need control

4

Honourcode, Inc. SoS Design: Current Research

SoS Characteristics

A System is a “System of Systems” if it exhibits
significant amounts of:

 Emergent behavior - SoS performs functions not
achievable by the independent component systems

 Geographic distribution - geographic extent forces the
elements to exchange information in a remote way

 Evolutionary development - functions and purposes are
added, removed and modified in an ongoing way

 Operational independence - component systems have
purpose even if detached

 Managerial independence - component systems are
developed and managed for their own purposes
- Mark Maier 1998, “Architecting Principles for SoS,” Systems Engineering (INCOSE)

5

Honourcode, Inc.

DANSE Region of Interest

Systems of Systems Observed Characteristics

Operational
Independence

Managerial
Independence

Evolutionary
Development

Emergent
Behaviour

Geographic
Distribution

LOW

HIGH

MED

The Internet

Supply Chain Management

Military

Airport

Differing Levels of “SoS-ness”

Integrated Water
Treatment/Supply
Air Traffic Management
Autonomous Ground
Transport

Emergency Response

Systems of Systems Concepts

Virtual

Collaborative

Acknowledged

Directed

6

Honourcode, Inc.

Emergency Response SoS

Communicate

MeteoCom: Control Centre

WaterCom: Control Centre

Additional Actors
providing add. Resources

& Capabilities

FireCom: Control Centre

FireBrigade_4: FireStation

FireBrigade_1: FireStation

FireBrigade_2: FireStation

FireBrigade_3: FireStation

Hospital_1: Hospital

Hospital_2: Hospital

Hospital_3: Hospital

Communicate/ control

MRS_1: Mobile
Radio System

TDAS: Threat Detection &
Alert System

Control

communicate/ control

MRS_3: Mobile
Radio System

communicate

MRS_2: Mobile
Radio System

PoliceCom: Control Centre

Police_3: PoliceStation

Police_2: PoliceStation

Police_1: PoliceStation

Police_4: PoliceStation Police_5: PoliceStation

WaterPolice_1: WaterPoliceStation

WaterPolice_2: WaterPoliceStation

Catastrophe &
Emergency CCC

Slide by Tim Lochow, EADS

Honourcode, Inc.

Emergency Response SoS Dynamicity

Design Exploration
Architecture Alternatives

Run Time Analysis
& Simulation

Modelling the
SoS

SoSE Challenges

Years

Decades

Hours

Minutes

Life Cycle
Dynamicity

System
Dynamics

Operational
Dynamicity

So
S

op
er

at
io

na
l t

im
el

in
e

an
d

dy
na

m
ic

ity
 a

sp
ec

ts

Slide by Tim Lochow, EADS

Improved Emergency response performance in terms of

response time to emergency call and situational awareness

Population increase

New C4I command & control organization & communication
system (e.g. introduction of LTE)

New buildings, roads and crossroads are created

New fire, police and health care department stations are
built or moved (More stations in order to serve smaller city

areas)

More fire, police and health care department units are
allocated

Designing for Adaptability and evolutioN in
System of systems Engineering

Honourcode, Inc.

DANSE Methodology
What is the DANSE project?
What is the life cycle of an SoS?
How does the DANSE methodology work in
that life cycle?

DANSE Methodology 9

Honourcode, Inc.

DANSE Consortium

Loughborough
University

Airbus France

THALES

INRIA
Rennes

SODIUS Advanced Laboratory
on Embedded Systems

OFFIS
Co-ordinator

Airbus Germany

Carmeq

Israel Aerospace
Industries

IBM Haifa

Contact:
Bernhard Josko
josko@offis.de

Honourcode
(technical support)

Course Introduction 10

Honourcode, Inc.

DANSE Project

 Develop approaches for SoS engineering (design + manage)
 Methodology to support evolution, adaptive and iterative SoS

lifecycle
 Contracts as semantically-sound model for SoS interoperations
 Architecting Approaches for SoS – continuous and non-disruptive

constituent system integration
 Supportive tools for SoS analysis, simulation, optimization

 Validation by real-life test cases
 Emergency Response; Integrated Water Treatment and Supply;

Air Traffic Management; Autonomous Ground Transport
SoS Design: Current Research 11

Honourcode, Inc.

DANSE Methodology

Single model to embody the
integrating thoughts

 An initiation phase
 Optional creation phase
 Forward movement

through the SoS life
 Constant cycling of

events/scenarios
 A “capability learning cycle”

 Where the DANSE
benefit happens!

 Normal Vee-based SE in
the constituent systems

DANSE Methodology 12

SoS
Initiation

Phase

TIME

SoS Operation Phase
(continuous)

SoS
Engineering

Constituent
Systems

Engineering

Capability
Learning Cycle

Model SoS behaviour

Operate the SoS

Define potential needs

Analyze possible architecture changes

Influence and implement changes

(SoS
Creation
Phase)

Alternate starting points:
• SoS is acknowledged among existing systems
• SoS is created by a Lead System Integrator

Honourcode, Inc.

TIME

Model SoS behaviour

Operate the SoS

Define potential needs

Analyze possible architecture changes

Influence and implement changes

SoS
Engineering

Constituent
Systems

Engineering

Capability
Learning

Cycle

SoS Operation Phase
(continuous)

(SoS
Creation
Phase)

SoS
Initiation

Phase

Capability Learning Cycle

 Constantly improve the SoS by a cycle
of learning:
 Define potential needs
 Analyze possible architecture

changes using models
 Influence and implement changes

DANSE Methodology 13

SoS

SoS
ctrl sys

source info
services

system
subsys

subsys
subsys

subsys

source info services

system
subsys

subsys
subsys

subsys

source info services

system
subsys

subsys
subsys

subsys

source info services

system
subsys

subsys
subsys

subsys

source info services

source info services

source info services

source info services

source info services

source info services

system
model

model
model

system
model

model
model

system
model

model
model system

model
model

model

SoS
model

model
model

Capability
Learning Cycle

Designing for Adaptability and evolutioN in
System of systems Engineering

Honourcode, Inc.

DANSE Solution Methods
What actions can an SoS manager/architect
perform within the DANSE methodology?

DANSE Solution Methods 14

Honourcode, Inc.

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Solution Methods

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

DANSE Solution Methods 15

Honourcode, Inc.

Solution Methods

DANSE Solution Methods 16

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

 Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Honourcode, Inc.

Solution Methods in the lifecycle

DANSE Solution Methods 17

• Configure DANSE Tool-Net environment
• Model SoS
• Abstract constituent system models
• Share models

• Perform joint simulation
• Evaluate emergent behaviour

• Evaluate goals and contracts
• Perform joint simulation
• Evaluate emergent behaviour

• Evaluate goals and contracts
• Apply architecture patterns
• Generate architecture alternatives
• Generate optimized architectures
• Optimize SoS architecture
• Perform joint simulation
• Evaluate emergent behaviour
• Perform statistical model checking
• Perform formal verification
• Share models

• Evaluate goals and contracts
• Optimize SoS architecture
• Perform joint simulation
• Evaluate emergent behaviour
• Perform formal verification
• Share models

Honourcode, Inc.

DANSE Tools

18

UPDM Rhapsody

Real SoS

DANSE Tools

Joint
Simulation

Statistical
Model
Checking

Constituent
Systems

Honourcode, Inc.

Example “Use Case” of Methodology

DANSE Solution Methods 19

SoS Requirements Analysis SoS Goals/Contracts

SoS Modelling

SoS Architecture Model
(UPDM/NAF/etc.)

Activities

Products

Architecture Optimization

Alternative Architecture
Generation

Patterns

CS Modelling

Joint Simulation
Emergent Behaviour

Parametric Analysis

Statistical Model Checking Formal Verification

Designing for Adaptability and evolutioN in
System of systems Engineering

Honourcode, Inc.

DANSE Tools
What automated tools does DANSE provide
to support the solution methods?

DANSE Tools 20

Honourcode, Inc.

Solution Methods
Modeling

DANSE Solution Methods 21

 Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Honourcode, Inc.

UPDM Overview

 “Unified Profile for DoDAF and MoDAF,” also covers NAF
All Viewpoint Capability

Viewpoint

Data &
Information
Viewpoint

Operational
Viewpoint

Project
Viewpoint

Services
Viewpoint

Standards
Viewpoint

Systems
Viewpoint

Operational Viewpoint
OV-1 High-Level Operational Concept

Graphic
OV-2 Operational Resource Flow

Description
OV-3 Operational Resource Flow Matrix
OV-4 Organizational Relationships Chart
OV-5a Operational Activity Decomposition

Tree
OV-5b Operational Activity Model
OV-6a Operational Rules Model
OV-6b State Transition Description
OV-6c Event-Trace Description

Systems Viewpoint
SV-1 Systems Interface Description
SV-2 Systems Resource Flow Descr.
SV-3 Systems-Systems Matrix

SV-4 Systems Functionality Description
SV-5a Operational Activity to Systems

Function Traceability Matrix
SV-5b Operational Activity to Systems

Traceability Matrix
SV-6 Systems Resource Flow Matrix
SV-7 Systems Measures Matrix
SV-8 Systems Evolution Description
SV-9 Systems Technology and Skills

Forecast
SV-10a Systems Rules Model
SV-10b Systems State Transition

Description
SV-10c Systems Event-Trace Description

Honourcode, Inc.

Executable UPDM Views

 SoS model should be executable as a simulation
 Compare results with real world
 Project “what if” scenarios

 These views support execution, lead to joint simulation

SoS Modeling 23

View Name Simulation

OV-5a Operational Activity
Decomposition Tree

Structure of OV executable elements

OV-5b Operational Activity Model SysML Use Case, Activity forms

OV-6b State Transition Description SysML State diagrams

OV-6c Event-Trace Description SysML Sequence diagrams

SV-1 Systems Interface Description Structure of SV executable elements

SV-4 Systems Functionality Description SysML Use Case, Activity forms

SV-10b Systems State Transition
Description

SysML State diagrams

SV-10c Systems Event-Trace Description SysML Sequence diagrams

Honourcode, Inc.

Constituent System Models

CS1 CS2 use

communicate

authority SoS View

System View

Com-Link

sendToDistirct(…)

requestStatus(…)

Lift systems on the level of
SoS

24 Abstraction Methods

Honourcode, Inc.

Abstraction Methods

Abstraction Methods 25

Partner
Group nodes with
similar interactions

Spotlight
Focus on key elements,

others generalized

Timing
Focus on timing issues;

other issues ignored

Steady State
Focus on stable states
& transitions among

Statistical
Match statistical

behavior w/o details

Flow
Focus on I/O and key

parameters

…others also exist

Honourcode, Inc.

Solution Methods
Goals and Contracts

DANSE Solution Methods 26

 Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Honourcode, Inc.

Goals and Contracts as SoS
“Requirements”

 Goal: statement of a desired condition, with quantifiable
measurement of the degree to which it is met.
 Communications coverage over the urban area

 (% area covered)
 Response time to a fire

 (minutes between call and arrival)
 Graded levels of performance

 Contract: statement of an essential condition, with

quantifiable measurement whether it is met.
 Within the urban area, response time to a fire is no greater

than 15 minutes with probability 99.5%
 Catastrophe and Emergency Center has direct

communications with all fire, police, ambulance centers
 Yes/No evaluation

Adaptive Evolution 27

Honourcode, Inc.

Goals/Contracts Specification
Language (GCSL) Overview

 Bridges the gap between
 Natural language used by people
 Formal languages required by analysis

tools
 Textual pattern with specific semantics
 Formalization process

1. Define natural language goals/contracts
2. Structure each statement into the

• Assumption part (“If X is true…”) and the
• Promise part (“…then Y must be true”)

3. Select a GCSL pattern for the type of
relation

4. Write “X” and “Y” in the GCSL syntax

Goals and Contracts Specification Language 28

Catastrophe and Emergency
Center has direct comms
with all police centers

If CEC exists…
…then it has direct comms
with all police centers

SoS.itsCEC->exists(CEC) implies
SoS.itsCEC->ForAll(PoliceCenter-
>comms=true)

Honourcode, Inc.

GCSL Editor

 Rhapsody plug-in, part of DANSE UPDM profile extensions
 Create UPDM block

 Associated with SoS object of interest
 Contains GCSL statements

 GCSL Editor checks syntax

Goals and Contracts Specification Language 29

Honourcode, Inc.

Solution Methods
Architecture Exploration

DANSE Solution Methods 30

 Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Honourcode, Inc.

SoS Architecture Patterns

 Templates to describe solutions to
known problems
 Context – Problem - Solution

 Provide a generalized guideline to
realize certain architecture
characteristics.

 Built on a common anatomy

 DANSE has developed an SoS
pattern repository
 Searchable database of patterns
 UPDM profiles that can be

inserted into the SoS model

Architecture Patterns 31

Honourcode, Inc.

Architecture Pattern Anatomy

The Author of
the Pattern

Rhapsody Models
Available for

Download

Any key words
that may

appear in the
pattern that

will be useful
when looking
up the pattern
in a repository.

Name of Pattern

This refers to the
problem and why
you would use the

pattern to
address the issue.

Statement of why
the pattern would

be utilised to
address the design

problem or
situation. It will
help understand
the structure and

consequences later
in the pattern.

Also known as.

Diagram of
Pattern’s
Structure

14 other fields also available

Honourcode, Inc.

Architecture Patterns Repository

Sophisticated online repository for
architecture patterns with powerful search
capabilities, option to store new patterns.

The repository exists itself in three forms;
a document-based repository,
a repository of IBM Rhapsody profiles,
and
an online searchable repository with the
option to download IBM Rhapsody
SysML/UPDM profiles for inclusion in
DANSE Tool-net.

 33

 Architecture Patterns repository includes larger catalog of patterns
 e.g. UPDM, SysML,Test Cases etc.

Accessed via:
Conventional web browser (all popular browsers supported),
Apple iPad running the free FileMaker App – FileMaker Go.
User run-time version of FileMaker

Honourcode, Inc.

RHS LHS

Graph Grammar

1. Reader: Matched, not changed.
2. Eraser: Matched and removed.
3. Creator: Added to the model.
4. Embargo: Prevents the match.

 FS

FT FT FT FT

PS FS

FT FT FT FT

FS

Story Chart

FS

FT FT FT FT

PS FS

FS

FT FT

FS

FT FT FT FT

PS FS

FT FT FT FT FT

FS

FT FT FT FT

FS

FT FT FT

FS

FT FT FT FT

PS FS FS

FT FT FT FT

PS

FS

FS

FT FT FT FT

PS

Architecture Generation: Graph Grammar

 Rules for changing the form of a set of relationships
 Left hand side (LHS) depicts a pattern that can be matched
 Right hand side (RHS) depicts a transformed version
 Story Chart combines LHS and RHS into a transformation rule

 Any successful find of the LHS pattern can be replaced with the RHS
 This method can automatically

 generate new architectures

FT: Fire truck
FS: Fire station
PS: Police station

 34

Honourcode, Inc.

DANSE Graph Grammar

• Story Charts implemented as special UPDM diagrams
• Based on a UPDM profile to enable the modeling of a rule
• Revised models created automatically by applying the rules

Architecture Generation: Graph Grammar 35

Honourcode, Inc.

Exploration of Design Space

Contract
Violation

Low Goal
Satisfaction

OK

OK

OK

Low Goal
Satisfaction

Low Goal
Satisfaction

Contract
Violation

Contract
Violation

Contract
Violation

Contract
Violation

Contract
Violation

SoS contract
•Assumption
… (GCSL)
•Promise
… (GCSL)

Honourcode, Inc.

Reachability of Future Architectures

Centralized Decentralized

Contract
Violation

Low Goal
Satisfaction

OK

37 Architecture Generation: Graph Grammar

Intermediate

Intermediate

Intermediate

Intermediate

Intermediate

Intermediate

Intermediate

×

Intermediate

Intermediate

×
Intermediate

Intermediate

Intermediate

Intermediate

Intermediate ×

×

Honourcode, Inc.

Architecture Optimization Concept

38 Architecture Optimization: Concise Modelling

Honourcode, Inc.

Concise Modeling

SysML models combined with tabular data
 SysML depicts the system composition rules (architectural

template or pattern)
 Tables contain instantiations, variations in quantities or

parameters
 Automatic Generation tool creates architecture variants by

applying the table data to the template

Architecture Optimization: Concise Modelling

DMS_Technical
«block»

switches1..*

power

switchToSwitchConnector

RDCs1..*

power

network

doorClosedSensors1..*power output

latchActuators1..*
power

control

controllers1..*

power

network

powerBays2

power

doorLockedSensors1..*power
output

doorLatchedSensors1..*

power
output

lockActuators1..*
power control

switchToSwitchConnector

DMS_Expanded.DoorLatchActuator @ Door 6_225:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.RDC @ Door 6_229:RDC
1 «block,VaryingPart» power:intdevice

network

Link_110106Link_110106

DMS_Expanded.DoorLockActuator @ Door 3_166:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.Controller @ Avionics Bay_105:Controller
1 «block,VaryingPart» power:intnetwork

Link_81080

DMS_Expanded.RDC @ Door 3_167:RDC
1 «block,VaryingPart» power:intdevice

network

Link_81080

DMS_Expanded.Switch @ Switch Bay 1_113:Switch
1 «block,VaryingPart» power:int

network[NumOfPorts]

Link_41049

Link_110049

Link_41049

Link_110049

DMS_Expanded.DoorClosedSensor @ Door 4_171:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

DMS_Expanded.DoorLockedSensor @ Door 1_138:DoorLockedSensor
1 «block» power:intoutput

DMS_Expanded.DoorLockedSensor @ Door 4_174:DoorLockedSensor
1 «block» power:intoutput

DMS_Expanded.DoorLockActuator @ Door 1_142:DoorLockActuator
1 «block,VaryingPart»

power:int
control

DMS_Expanded.DoorLatchActuator @ Door 4_177:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorClosedSensor @ Door 2_147:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

DMS_Expanded.DoorLockActuator @ Door 4_178:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLatchActuator @ Door 2_153:DoorLatchActuator
1 «block,VaryingPart» power:int

control

Link_90084

DMS_Expanded.RDC @ Door 4_179:RDC
1 «block,VaryingPart»

latency:float=50.0

 Operations

power:intdevice

network

Link_90086

Link_90088

Link_90049
Link_90089

Link_90084

Link_90086

Link_90088

Link_90049
Link_90089

DMS_Expanded.RDC @ Door 2_155:RDC
1 «block,VaryingPart»

weight:float=0.138
analog:int

 Operations

power:int

device

network

Link_72070Link_72049

Link_72066

Link_72070Link_72049

Link_72066

DMS_Expanded.DoorClosedSensor @ Door 5_207:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_81077
DMS_Expanded.DoorLockedSensor @ Door 3_162:DoorLockedSensor
1 «block» power:intoutput Link_81077

DMS_Expanded.DoorLockedSensor @ Door 5_210:DoorLockedSensor
1 «block» power:intoutput

DMS_Expanded.Switch @ Switch Bay 1_108:Switch
1 «block,VaryingPart» power:int

network[NumOfPorts]

Link_44049

Link_81044

Link_44049

Link_81044

DMS_Expanded.DoorLatchActuator @ Door 5_213:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLatchActuator @ Door 1_141:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLockActuator @ Door 5_214:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLockedSensor @ Door 2_150:DoorLockedSensor
1 «block» power:intoutput

Link_72068Link_72068

Link_100097

DMS_Expanded.RDC @ Door 5_216:RDC
1 «block,VaryingPart» power:intdevice

network

Link_100098

Link_100095
Link_100093 Link_100044

Link_100097
Link_100098

Link_100095
Link_100093 Link_100044

Link_81075

DMS_Expanded.DoorClosedSensor @ Door 3_159:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_81075

Link_110103

DMS_Expanded.DoorClosedSensor @ Door 6_220:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_110103

DMS_Expanded.DoorLockActuator @ Door 2_154:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

Link_72071Link_72071

DMS_Expanded.DoorLatchActuator @ Door 3_165:DoorLatchActuator
1 «block,VaryingPart» power:intcontrolLink_81079Link_81079

DMS_Expanded.RDC @ Door 1_145:RDC
1 «block,VaryingPart» power:intdevice

network

Link_65062

Link_65059

Link_65061

Link_65044

Link_65062

Link_65059

Link_65061

Link_65044

Link_110104
DMS_Expanded.DoorLockedSensor @ Door 6_222:DoorLockedSensor
1 «block» power:intoutput Link_110104

Link_40044

DMS_Expanded.Controller @ Avionics Bay_102:Controller
1 «block,VaryingPart» power:intnetwork Link_40044

DMS_Expanded.DoorLockActuator @ Door 6_226:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

Link_110107Link_110107

DMS_Expanded.DoorClosedSensor @ Door 1_136:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_65058Link_65058

39

Honourcode, Inc.

Dashboard for Architecture
Optimization

• Single environment
 Main tool of the Systems Engineer
 Controlling the design and analysis

process

• Based on Design Manager and JTS

• Interaction with modeling
environments
 Review and comment mechanisms
 Models import / export control
 Back-end model transformations

• Integration with analysis tools
 Simulations, computations, domain

specific views
 White-box, black-box
 Analysis results feedback into models

• Visual analytics

Modeling
management

Data management

Multiple
Analyses

Results management

Back-Annotation

Objectives
management

40 Architecture Optimization: Concise Modelling

Honourcode, Inc.

Solution Methods
Joint Simulation and Analysis

DANSE Solution Methods 41

 Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Honourcode, Inc.

Performance Evaluation Concepts

 Have generated multiple architecture alternatives
 Patterns application
 Graph grammar automated generation
 Concise modeling with optimization

 Need SoS joint simulation to evaluate performance
 Predict characteristics of interest
 Evaluate contracts and goals during simulation
 Dynamic aspects of optimization
 Stochastic variability

 Provide information for decision analysis

Joint Simulation: Performance Evaluation 42

Honourcode, Inc.

Joint simulation

Constituent
Systems

SoS
Specification

UPDM

FMI

Constituent
Systems

Models

SoS
Structure

• FMI standard for component integration
• Constituent system models exported as FMUs from tool
• SoS architecture exported to DESYRE
• FMUs imported in DESYRE
• Simulation run in DESYRE
• Simulation results output from DESYRE

43 Joint Simulation: Performance Evaluation

Honourcode, Inc.

Statistical Model Checking

 Goals and Contracts specified in UPDM model
 GCSL translated into a set of properties that

can be evaluated by PLASMA
 UPDM parameters set as observable, traced

by the simulator
 DESYRE simulator provides PLASMA with the

value assumed by the variables step-by-step
during the simulation

 PLASMA verifies the properties
 PLASMA returns the Statistical Model

Checking and contract verification results

Statistical Model Checking 44

FMU

FMU

FMU

FMU

FMU FMU

FMU FMU

FMU FMU

FMU FMU

MEAN(SoS.itsDistri
cts.fireArea-
>sum(),
duration/interval) <
0.01/100 *
SoS.itsDistricts.area
->sum()

SoS.itsDistricts-
>forAll(district |
 Whenever
[district.fireArea >
0] occurs,
[district.fireArea =
0]

Whenever
[SoS.itsDistricts.fire
Area->sum() > 0]
occurs,
[SoS.itsDistricts.fire
Area->sum() = 0]
occurs within [0,
false)

The probability that a
district does not stay
under fire more than 3
hours shall be greater
than 99.9%

Designing for Adaptability and evolutioN in
System of systems Engineering

Honourcode, Inc.

Implementation
How does the DANSE methodology support
change in the SoS?

DANSE Tools 45

Honourcode, Inc.

Constituent System Requirements

 Each change to the SoS and constituent system models
implies a change to the actual constituent systems

 Changed / new requirements become inputs to acquisition
processes
 Modify existing systems
 Implement new systems

Changing the SoS 46

source info services

source info services

source info services

source info services

source info services

system
model

model
model

system
model

model
model

system
model

model
model system

model
model

model

SoS
model

model
model

CS requirements
modification

Requirements
for a new CS

Honourcode, Inc. Changing the SoS 47

Control vs. Influence

 Traditional systems typically rely heavily on centralized
command and control
 Single acquisition authority
 Prime contractor
 Subcontractors via contractual arrangement
 Suppliers
 Other stakeholders

 SoSs rely on influence and indirect control
 Multiple acquisition authorities
 May be a SoS Integrator
 Multiple System Contractors
 Several additional stakeholders

Designing for Adaptability and evolutioN in
System of systems Engineering

Honourcode, Inc.

Summary

DANSE Tools 48

An effective methodology for SoS evolution
supported by useful tools

Honourcode, Inc.

DANSE Methodology

Single model to embody the
integrating thoughts

 An initiation phase
 Optional creation phase
 Forward movement

through the SoS life
 Constant cycling of

events/scenarios
 A “capability learning cycle”

 Where the DANSE
benefit happens!

 Normal Vee-based SE in
the constituent systems

DANSE Methodology 49

SoS
Initiation

Phase

TIME

SoS Operation Phase
(continuous)

SoS
Engineering

Constituent
Systems

Engineering

Capability
Learning Cycle

Model SoS behaviour

Operate the SoS

Define potential needs

Analyze possible architecture changes

Influence and implement changes

(SoS
Creation
Phase)

Alternate starting points:
• SoS is acknowledged among existing systems
• SoS is created by a Lead System Integrator

Honourcode, Inc.

Example “Use Case” of Methodology

DANSE Solution Methods 50

SoS Requirements Analysis SoS Goals/Contracts

SoS Modelling

SoS Architecture Model
(UPDM/NAF/etc.)

Activities

Products

Architecture Optimization

Alternative Architecture
Generation

Patterns

CS Modelling

Joint Simulation
Emergent Behaviour

Parametric Analysis

Statistical Model Checking Formal Verification

Honourcode, Inc.

DANSE Tools

51

UPDM Rhapsody

Real SoS

DANSE Tools

Joint
Simulation

Statistical
Model
Checking

Constituent
Systems

Designing for Adaptability and evolutioN in
System of systems Engineering

Honourcode, Inc.
Eric Honour
+1 (615) 614-1109
ehonour@hcode.com

October 2014 52

DANSE
Methodology

Integrated Water
Treatment and Supply

Air Traffic
Management

Automated
Ground Transport

Emergency
Response

mailto:ehonour@hcode.com

	An Effective, Tool-Supported Methodology for SoS Engineering in Europe
	Agenda
	��Systems of Systems Concepts
	Architecture of an SoS
	SoS Characteristics
	Differing Levels of “SoS-ness”
	Emergency Response SoS
	Emergency Response SoS Dynamicity
	��DANSE Methodology
	DANSE Consortium
	DANSE Project
	DANSE Methodology
	Capability Learning Cycle
	��DANSE Solution Methods
	Solution Methods
	Solution Methods
	Solution Methods in the lifecycle
	DANSE Tools
	Example “Use Case” of Methodology
	��DANSE Tools
	Solution Methods�Modeling
	UPDM Overview
	Executable UPDM Views
	Constituent System Models
	Abstraction Methods
	Solution Methods�Goals and Contracts
	Goals and Contracts as SoS “Requirements”
	Goals/Contracts Specification Language (GCSL) Overview
	GCSL Editor
	Solution Methods�Architecture Exploration
	SoS Architecture Patterns
	Architecture Pattern Anatomy
	Architecture Patterns Repository
	Graph Grammar
	DANSE Graph Grammar
	Exploration of Design Space
	Reachability of Future Architectures
	Architecture Optimization Concept
	Concise Modeling
	Dashboard for Architecture Optimization
	Solution Methods�Joint Simulation and Analysis
	Performance Evaluation Concepts
	Joint simulation
	Statistical Model Checking
	��Implementation
	Constituent System Requirements
	Control vs. Influence
	��Summary
	DANSE Methodology
	Example “Use Case” of Methodology
	DANSE Tools
	Slide Number 52

