Relative Comparison of the Rate of Convergence of Collaborative Systems of Systems: A Quantified Case Study

Bernie Collins, Dr. Steve Doskey, Dr. James Moreland
George Washington University
Presented 10 May 2016 to the System of Systems Engineering Collaborators Information Exchange
Relative Comparison of the Rate of Convergence of Collaborative Systems of Systems

• Abstract
• Collaborative System of System
• Modelling Approach
 • Causal Map and Dynamic Bayesian Network
• U.S. Smart Grid as a System of Systems
 • Factors which influence convergence of functionality
 • Constituent systems and Metric for Functionality
 • Representative model of the System of Systems
• Expected Results
• Initiatives to Counter Improvised Explosive Devices as a System of Systems
 • Factors which influence convergence of functionality
 • Constituent systems and Metrics of functionality
Abstract

• A System of Systems provides functionality beyond that possible from its constituent systems. The functionality emerges over time; there is a need to **predict the system’s rate of convergence**.

• Convergence can be seen as a measure of technical progress towards a desired business capability. The rate of convergence is dependent on **Political, Economic, Societal and Technological (PEST)** factors.

 – For example, the United States Smart Grid, a collaborative System of Systems, is converging at various yearly rates in each of the fifty state and consequentially by a quantifiable yearly rate in the United States. In each state, the rate depends on policies, roadmaps, grants, cost recovery, consumer support and sufficiency of technological solutions.

• We **constructed a Dynamic Bayesian Network to model the rate of convergence of the Smart Grid**. The convergence model was trained using historical data representing the PEST factors and may be used to predict the future rate of convergence.

• The predictions of the convergence model may be **used to communicate technical progress to stakeholders and to make comparative assessments among the PEST factors** influencing the convergence of Systems of Systems.
Collaborative System of Systems

- Three characteristics distinguish types of SoS: Objective, Governance, Inter-relationship (of the constituent systems to the aggregated system)
- The PEST factors have differing degrees of influence for each of the SoS types

<table>
<thead>
<tr>
<th>SoS Objective: Emergent</th>
<th>SoS Objective: Recognized</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoS Governance: Community</td>
<td>SoS Governance: Centrally Managed</td>
</tr>
<tr>
<td>Inter-relationship: Independent</td>
<td>Inter-relationship: Subordinate</td>
</tr>
</tbody>
</table>

Derived from:
Modelling Approach – Dynamic Bayesian Network

• Identify Quantifiable Factors which Influence the Rate of Convergence
 • Policy – Legislation, Directives, Control Documents, Vision Statements
 • Economic – Financial/Quantifiable Factors to Close the Business Case
 • Societal – Public or Subversive Support or Resistance
 • Technological – Capability to Interoperate, Capacity to Contribute

• Specify the Systems and the System of Systems; Determine Metrics for Functionality

• Construct DBN and Relative Conditional Tables for each ARC in the Model Based on Relevant Observations or Expert Elicitation

• Validate the Model; Use the Model to Explore Contributions of and Dynamics with the Factors which Influence

Dynamic Bayesian Networks are Directed Acyclic Graphical models of Stochastic processes
Background: U.S. Smart Grid Framework

The Advance Metering Infrastructure (AMI) is crucial for enabling the U.S. Smart Grid

The Grid of each State is a constituent system
Smart Grid - Factors which Influence

Policy

Societal

Economic

Technological

Source: BSTA 2014
Smart Grid – Factors which Influence AMI Deployment

<table>
<thead>
<tr>
<th>State</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>2008</td>
<td>2009</td>
<td>2010</td>
<td>2011</td>
<td>2012</td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td>Kentucky</td>
<td>2008</td>
<td>2009</td>
<td>2010</td>
<td>2011</td>
<td>2012</td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td>Maryland</td>
<td>2008</td>
<td>2009</td>
<td>2010</td>
<td>2011</td>
<td>2012</td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td>California</td>
<td>2008</td>
<td>2009</td>
<td>2010</td>
<td>2011</td>
<td>2012</td>
<td>2013</td>
<td>2014</td>
</tr>
</tbody>
</table>

Legislative
- roadmap: 0 0 1 1 1 1 1
- policy statement: 0 0 1 1 1 1 1

Societal
- resistance: -1 -1 -1 -1 -1 -1 -1
- opt-out: 0 0 0 1 1 1 1
- customer education: 1 1 1 1 2 2
- dynamic pricing: 1 1 1 1 1 1 1

Economical
- arra funding: 0 0 51.43 257.6 395.4 405.2 237

Technological
- demonstration project: 126

Evidence
- AMI FOM (Growth): 0 0 0.255 0.628 0.087 0.005 TBD

State Public Utility Commissions and Utility Industries Deploy the Smart Grid Constituent Systems Independently

(U.S. Energy Information Administration, 2007 - 2013)
• Factors which Influence may be directed towards one system or many
• Systems may be closely related or diverse
• Time Phased Convergence of System Capability (and resultant Functionality) may be depicted
• A SoS-level DBN is comprised of nested System-level DBN
Sensitivity Analysis (Using Netica)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI Delta (Growth h) [0]</td>
<td>AMI Delta (Growth h) [1]</td>
<td>AMI Delta (Growth h) [2]</td>
<td>AMI Delta (Growth h) [3]</td>
<td>AMI Delta (Growth h) [4]</td>
<td>AMI Delta (Growth h) [5]</td>
<td>AMI Delta (Growth h) [6]</td>
</tr>
</tbody>
</table>
Counter – Improvised Explosive Device SOS
Factors which Influence

Policy

Societal

Economic

Technological
Counter – Improvised Explosive Device SOS
Systems and Functionality

The C-IED SOS and Factors are Dynamic
Expected Outcomes

• Application of a Dynamic Bayesian Network (or other forms of Artificial Intelligence) to evaluate convergence will advance the state of the art of architecting System of Systems
 • The model will improve the ability to describe current and forecasted functionality

• Evaluating the SoS within the PEST framework will heighten the importance of acknowledging and influencing the environment

• A convergence vector will be developed to:
 • Provide translation of technical progress to business capability in order to communicate status to stakeholders and customers
 • Make comparative decisions among factors influencing the convergence of Systems of Systems.
100 Drones as an SoS

“Humanity is curious, and humanity is equipped with hope. But that driving force is in all of us. And makes us do things that are just like...one would say crazy probably. And others would say...astonishing.”

Horst Hörtner, Director of the ARS Electronica Futurelab, spoke those words after establishing a Guinness world record by simultaneously operating 100 unmanned aerial vehicles. The vehicles flew as a swarm, as a system of systems, to create a three-dimensional light show in sync with a live rendition of Beethoven’s Fifth Symphony. (YouTube, 2016: 100 Dancing Drones Set World Record)
Contact Information

• Bernie Collins
 • bfcollins@gwu.edu
 • (571)274-8826

• Dr. Steve Doskey
 • sdoskey@gwu.edu

• Dr. James Moreland
 • jmorelan@gwu.edu
References

Dynamic Bayesian Model of Smart Grid

System-level:
Single State; Single Year

System of Systems:
Multiple States; Multiple Years
Smart Grid AMI – Phased SOS Deployment

AMI Adoption Across the USA

- Data represents project-level changes in meter operations costs
- Data are from 15 Smart Grid Investment Grant (SGIG) Projects
 - Represents 3.7 million operating smart meters
 - Based on operational experiences from April 1, 2011 to March 31, 2012

AMI Functionality

(U.S. Energy Information Administration, 2007 - 2011)
(U.S. Department of Energy, 2012)
Introduction

• Several industries including Defense, Transportation, Health Care and Energy are pursuing increasingly ambitious functionality through Systems of Systems
• The functionality evolves over time to provide a highly sophisticated and integrated capability
• System of Systems engineers need to be able to describe the status of the System of Systems to stakeholders and customers
• This presentation describes a modeling approach which will quantify the relative rate of convergence of a System of Systems
• The model will incorporate representations of factors which influence the rate of convergence
• Observations from analyzing multiple case studies will be instrumental for refining the construct of the model and the representation of the factors
• The analysis will focus on documented, incremental functionality of System of Systems such as the Smart Grid and the operational infrastructure created collaboratively by the Joint Improvised Explosive Device Defeat Capability Approval and Acquisition Management Process
• The model will advance the state of the art of architecting System of Systems by improving the ability to describe current and forecasted functionality
• It is envisioned that the convergence metric will provide translation of technical progress to business capability that can be used to communicate status to stakeholders and customers and be used to make comparative decisions among competing Systems of Systems.
Relative Comparison of the Rate of Convergence of Collaborative Systems of Systems: A Quantified Multi-Case Study

State S-Curves
Bayes Theorem and Bayes Networks

- Bayes Theorem is used to determine the probability of a Hypothesis given an Event.

\[P(H \mid E) = \frac{P(H)P(E \mid H)}{P(E)} \]

- Bayes Networks may be used to draw inferences from multiple Hypotheses based on multiple Events and, once trained, may be used to predict the probability of an Event given a Cause.

\[P(E_i \mid C_1) = \frac{P(E_i)P(C_1 \mid E_i)}{P(E_1)P(C_1 \mid E_1) + P(E_2)P(C_1 \mid E_2) + \cdots + P(E_n)P(C_1 \mid E_n)} \]
“In the light of all the evidence on tobacco, and after careful consideration of all the criticisms of this evidence that have been made, we find ourselves unable to agree with the proposition that cigarette smoking is a harmless habit with no important effects on health or longevity” (Cornfield (1959))
Dynamic Bayesian Networks

- DBNs are directed acyclic graphical models of stochastic processes
- Incorporates:
 - Multi-dimensional inputs (prior knowledge)
 - Multi-dimensional outputs (observations)
 - Time delay information

\[E \mid \{\text{Evidence}\} = \frac{P(\text{Evidence} \mid \theta) \cdot P(\theta)}{P(\text{Evidence})} \]

Equation 1. Bayesian Network model with Probability of Outcome as Dependent Variable

\[E \mid \{\text{Evidence}\} = \frac{P(\text{Evidence} \mid \theta) \cdot P(\theta)}{P(\text{Evidence})} \]

Equation 2. Bayesian Network model with Probability of Event as Dependent Variable
NamaStar: the Ultimate SE/PM Challenge

Bernie Collins, PhD Candidate, GWU