
Software Maintenance Cost Estimation using Parametric
Models: Issues in Characterizing Factors Impacting Software
Maintenance

16 October 2007

Goals

• Current Parametric Models’ Predictive Accuracy is a Concern
• COCOMO II Model Provides a Framework for Investigating

Models
• Identify Abrams Software Maintenance Cost Drivers
• Discuss the Complex Interaction of Software Maintenance Cost

Drivers
• Take Away: Current Parametric Models are not a Silver Bullet

for Software Maintenance Cost Estimation
• Take Away: Cost Drivers Impact Each Other
• Take Away: General Trends for Software Maintenance Cost

Drivers provide Guidelines for making Software Maintenance
Business Decisions

Parametric Model Accuracy

Air Force Institute of Technology: Decalogue
Project

• Calibrated and Evaluated the Performance of
10 Models against DoD Software Projects

• Result: No greater accuracy than 25% of the
actual cost, one half of the time[5]

D. V. Ferens, D. S. Christensen, “Does Calibration Improve Predictive Accuracy”,
CrossTalk, April 2000

1. SASET

2. REVIC

3. PRICE-S

4. SEER-SEM

5. SLIM

6. SoftCost-OO

7. CHECKPOINT

8. COCOMO II

9. SAGE

10. CHECKPOINT – calibrated against
a different database

Introduction COCOMO II

• COCOMO II Post-Architecture Maintenance
Model

() ∏
=

××=
15

1i
i

E
MM EMSizeAPM

[] MAFMCFzeBaseCodeSiSizeM ××=
zeBaseCodeSi

ledSizeModifiSizeAddedMCF +
=

⎟
⎠
⎞

⎜
⎝
⎛ ×+= UNFMSUMAF
100

1

Where:

MCF: Maintenance Change Factor
MAF: Maintenance Adjustment Factor
SU: Software Understanding
UNFM: Programmer Unfamiliarity

B. W. Boehm, C. Abts, A. W. Brown, S. Chulnai, B. K. Clark, E. Horowitz, R. Madachy, D. Reefers, B. Steece, “Software Cost Estimation
With COCOMO II”, Prentice Hall, Upper Saddle River, New Jersey, 2000.

SF: Scale Factors

∑
=

×+=
5

1

01.0
j

jSFBE

EM: Effort Multipliers

A: Productivity Constant

COCOMO II Scale Factors and
Effort Multipliers

Scale Factors: Precedentedness, Development
Flexibility, Architecture/Risk Resolution, Team
Cohesion, Process Maturity

Effort Multipliers:
Product Factors

1. Reliability

2. Test Data Size

3. Complexity

4. Documentation

Personnel Factors

8. Analyst Capability

9. Programmer Capability

10. Personnel Continuity (Churn)

11. Application Experience

12. Platform Experience

13. Language and Tool Experience

Project Factors
14. Software Tools

15. Multisite Development

Platform Factors

5. Timing Constraints

6. Storage Constraints

7. Platform Volatility

Size Estimates

• All Software Models
Require a Size
Estimate as an Input

• Two Major Sizing
Metrics: Source Lines
of Code (SLOC) or
Lines of Code (LOC)
and Function Points

• SEPv1 Measured
SLOC Used a More
Conservative Method
then the Estimate

M1A2 SEPv1 LRUs SLOC (Estimated 2002)
LRU1 70,000
LRU2 97,000
LRU3 90,000
LRU4 92,000
LRU5 61,000
Totals 410,000

M1A2 SEPv1 LRUs SLOC (Actual 2007)
LRU1 258,568
LRU2 222,487
LRU3 39,669
LRU4 40,436
LRU5 93,917
Totals 655,077

Size Estimates – Source Lines
of Code (SLOC)

• What is SLOC? No accepted definition
• Source Lines, Comments, Headers
• The actual developed software SLOC varies

based on software engineers skill
• SLOC sizes for the same program can vary

by more than 2000%
• Variations of 50 LOC per 100 LOC is not

uncommon

J. Schofield, “The Statistically Unreliable Nature of Lines of Code”, CrossTalk, April 2005.

Size Estimates – Function
Points

• Standard: International Function Points User
Group, IFPUG Counting Practices Manual,
Version 4.1, www.ifpug.org

• Attempt to measure functionality, by measuring
external interaction with the rest of the
software[6]

• Counts: External Inputs, External Outputs,
External Inquiry, Internal Logical Files, and
External Interface Files

• Doesn’t measure internal complexity of the
software module

• No Automatic Counting Method
L. Fischman, “Evolving Function Points”, CrossTalk, February 2001.

Introduction to the Abrams
Program

• Analysed Abrams Software Maintenance
Program for Cost Drivers

• Interviewed Experts
• Reviewed Program Documentation
• Reviewed Business Model and

Environment
• Analyzed this data

with regard to
COCOMO II

Abrams Architecture

LRU5 LRU6 LRU10A LRU11 LRU12 LRU3

LRU9 LRU8 LRU10B LRU13 LRU4

LRU7

RADIO

Intercom

Utility Bus
Data Bus

Slip Ring

-Primary LRU/Sensor
-Electronics components, peripherals, subsystems

Display/
Controls

iLRU5 LRU6 LRU3 LRU2A LRU1A

LRU9 LRU8 LRU1B LRU13 LRU4

LRU7
RADIO

Intercom

Utility Bus
Data Bus

Slip Ring

-Primary LRU/Sensor
-Electronics components, peripherals, subsystems

LRUB

-SEP Improved/replacement LRU, sensor, or component

MMU

M1A2 System Architecture
M1A2 System Enhancement
Package (SEP) Version 1 (v1)
System Architecture

SOFTWARE LIFE CYCLE SUPPORT PLAN for the Tank, Combat, Full Tracked, 120-MM Gun ABRAMS, May 28, 2002.

Abrams Software Maintenance
Team

• Requirements, Documentation, and Tests
are all Maintained along with the Software

Maintain:
• System

Requirements
• System

Architecture
• Requirements

Documents

Systems
Group

Systems
Group

Development
Group

Development
Group Test GroupTest Group

Lab/Vehicle
Support
Group

Lab/Vehicle
Support
Group

Maintain:
• Software
• Design

Documents

Provide:
• Independent

Verification
Testing

Maintain:
• Test Vehicles
• Lab and

System Bench
• Configuration

Control

Abrams Software Maintenance
Cost Drivers

• Adding New Functionality Introduce New Software Problems
• New Staff requires additional time to resolve software

problems
• Fixing existing problems can introduce unintended

consequences
• Documentation does not capture all low level design details
• COTS obsolescences drives hardware and software changes
• C4I Interoperability drives changes
• Maintaining Requirements, Documents, and Test requires a

large additional level of effort
• Safety Issues

Adding New Functionality

• The Abrams has evolved from the
original M1A2 to the SEP versions

• Requires Significant Effort:
Architectural, Requirements,
Documentation, and Software
Modifications

• Introduces new bugs, complexity, decay

The Waterfall Model of
Software Development

• General
Perspective on
Software

• Focused on the
Development of
the Product

• Maintenance is
only a Single Box

http://en.wikipedia.org/wiki/Image:Waterfall_model.png

Staged Model of
Software Life-Cycle

• Perspective Focused
on Maintenance

• Provides a framework
for establishing causal
relationship in
maintenance

• Establishes
Maintenance Activities,
Tools and Business
Consequeces[10]

V. T. Rajlich, K.H. Bennett, “A Staged Model For the Software Life Cycle”, Computer, July 2000, pg 66-71.

Software Evolution

Software
Evolution

Architectural
Coherence
Architectural
Coherence

Staff Skill/
Experience
Staff Skill/

Experience

DocumentationDocumentation

Hardware and
Software

Environment

Hardware and
Software

Environment

DoD Software Systems Must Continue to Change and
Grow to meet the needs of an Ever-Changing
Operational Environment[Leh96]

Organizational
Churn

Organizational
Churn Software

Decay
Software
Decay

Software Servicing

• Only Minor Repairs are Possible[Raj00]
• Each Fix Increases the Decay

Software
Servicing

Architectural
Coherence
Architectural
Coherence

Staff Skill/
Experience
Staff Skill/

Experience

DocumentationDocumentation

Hardware and
Software

Environment

Hardware and
Software

Environment
Organizational

Churn
Organizational

Churn
Software
Decay

Software
Decay

-

+
-

New
Functionality

New
FunctionalityEffortEffort

Software Decay (rot)

Definition from Eick. et al.: Software is decayed if it is
more difficult to change than it should be, as reflected
by the personnel costs, time to complete the change,
and the quality of the changed software[Eic01]

Definition from Rajlich et al.: The positive feedback
between the loss of staff expertise and the loss of
architecture coherence[Raj00]

S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, A. Mockus, “Does Code Decay? Assessing the Evidence from
Change Management Data”, IEEE Transactions on Software Engineering, January 2001, pg. 1-12.

Software Decay (rot)

“Software wears out because it is maintained.”[Lec06]

Architectural
Coherence
Architectural
Coherence

Software
Complexity

Software
Complexity

Software
Quality
Software
Quality

Software
Age

Software
Age

Organizational
Churn

Organizational
Churn

Increase
Software
Decay

Increase
Software
Decay

+

+ +-

-

S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, A. Mockus, “Does Code Decay? Assessing the Evidence from
Change Management Data”, IEEE Transactions on Software Engineering, January 2001, pg. 1-12.

Architectural Effects on a
System

Loss of Architectural Coherence:
• Loss of Software Modularity
• Fixes Effect a Large Percentage of the

Software
Skill/

Experience
Skill/

Experience Increased
Architectural
Coherence

Increased
Architectural
Coherence

EffortEffort DocumentationDocumentation

+

+

S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, A. Mockus, “Does Code Decay? Assessing the Evidence from
Change Management Data”, IEEE Transactions on Software Engineering, January 2001, pg. 1-12.

Complexity Effects on a
System

• Complexity Increases with each Maintenance Operation
• Complexity will Increase unless steps are taken to decrease it

Skill/
Experience

Skill/
Experience

ProductivityProductivity

Increased
Software

Complexity

Increased
Software

Complexity

Software
Decay

Software
Decay

-

+

-

New
Functionality

New
Functionality

Software
Fixes

Software
Fixes

+
Perfective

Maintenance
Perfective

Maintenance

M. M. Lehman, “Laws of Software Evolution Revisited”, Proceedings of the 5th European Workshop on
Software Process Technology, 1996, pg. 108-124.

How Abrams has Prevented
Decay

• Maintaining a team of experts

• System Upgrades: M1A2, SEPv1, SEPv2

• Maintaining Software Documentation

• Maintaining Software Architecture

• Perfective Maintenance to Reduce
Complexity and Increase Quality

Staff Skill/Experience

• Backbone of all Software Activities
• Their skills, experience and knowledge

drive every aspect of the project
• Skilled staff can make up for process,

design, knowledge, and documentation
short falls

Effect of Skill/Experience on
Software

Increased
Skill/

Experience

Increased
Skill/

Experience

Software
Size

Software
Size

Software
Complexity

Software
Complexity

Software
Quality
Software
Quality

ProductivityProductivity

+

-

Productivity throughout
Maintenance

• Maintenance Productivity will tend to reach a
constant rate for maintenance due to all of the
competing factors for resources[Leh97]

Skill/
Experience

Skill/
Experience

Constant
Productivity

Constant
Productivity

Software
Quality

Software
Quality

Software
Complexity

Software
Complexity

Architectural
Coherence
Architectural
Coherence

Software
Age

Software
Age

Organizational
Churn

Organizational
Churn

-

+

DocumentationDocumentation

EffortEffort + -

Software Faults

• Software Quality provides the initial
threshold for maintenance required by
the system

• Software Maintenance is Focused on
Poorly Designed Modules: 80/20 Rule
Applies

D. Lechner, “Software Recapitalization Economics”, CrossTalk, November 2006.

Fixes Cause New Problems

• Maintenance fixes of one software
problem can cause a cascade of
unintended problems

• Heavily constrained environment can
exacerbate this issue

• Environment becomes unsuitable for
making the necessary changes

Fixing Old Problems Causes
New Problems

Hardware and
Software

Environment

Hardware and
Software

Environment

DocumentationDocumentation

Organizational
Churn

Organizational
Churn

New Problems
Introduced

New Problems
Introduced

Staff Skill/
Experience
Staff Skill/

Experience

+

-

-

-

Incomplete Documentation

• Design Details fall through the cracks of
the software document or are to low
level to be documented with the
architecture.

Effect:
• Software isn’t modified
• Extra analysis or testing required
• Causes software Decay

I.D. Baxter, C.W. Pidgeon, “Software Change Through Design Maintenance”, Proceedings of the International
Conference on Software Maintenance, 1997.

Effects of Declining Documentation
Detail and Quality

Decreased
Documentation

Decreased
Documentation

Software
Size

Software
Size

Software
Complexity

Software
Complexity

Software
Quality
Software
Quality

Architectural
Coherence
Architectural
Coherence

+

-

COTS Obsolescence and C4I
Interoperability

• COTS Software and Hardware Evolve
at different rates from the core product
[Cla07]

• C4I Software also Evolves at a different
rate

• These changes are necessary if the
system is to remain relevant [Leh96]

COTS Drives Evolutionary
Changes

http://www.microsoft.com/windows/WinHistoryProGr
aphic.mspx

Intel X86 Decedents

Intel 80486DX at
25,33,50Mhz

Intel Pentium at
60,66Mhz

Intel Pentium II at
200 to 300Mhz

Intel Pentium III at
650Mhz – 1.2Ghz
Intel Pentium IV at

1.3 – 1.8Ghz

Intel Pentium IV at
2.0Ghz

M1A2 Major
Versions

Version 1.0

Version 2.0

Version 2.5

Version 2.6

Version 2.4

Version 2.3

Version 2.2

M1A2 SEP
Major Versions

Version 1.0

Version 3.0

Version 3.4

Version 3.5

SOFTWARE LIFE CYCLE SUPPORT PLAN for the
Tank, Combat, Full Tracked, 120-MM Gun ABRAMS,

May 28, 2002
http://www.intel.com/pressroom/kit
s/core2duo/pdf/microprocessor_ti

meline.pdf

http://www.microsoft.com/windowsxp/home/
http://www.microsoft.com/windowsxp/pro/

Safety Issues

• Safety for the Warfighter is the highest
priority

• Safety Issues require additional effort to
resolve

• Safety Issues require additional Testing
• Safety Issues found during testing require

additional software deliveries to resolve
• Require rapid resolution and an

experienced team
• Safety fixes lose the economy of scale

found in most Software Deliveries[Ban97]

The Big Picture

Skill/
Experience

Skill/
Experience

ProductivityProductivity

Software QualitySoftware Quality

Software
Complexity

Software
Complexity

Software
Size

Software
Size

Architectural
Coherence
Architectural
Coherence

Software AgeSoftware Age

Hardware
and Software
Environment

Hardware
and Software
Environment

DocumentationDocumentation

Organizational
Churn

Organizational
Churn

Software
Decay
Software

Decay

EffortEffort +

-

+

-

-

-+

-

-

+

References

[Ban97] R. D. Banker, S. A. Slaughter, “A Field Study of Scale Economies in Software Maintenance”,
Management Science, December 1997, pg. 1709-1725.

[Bax97] I.D. Baxter, C.W. Pidgeon, “Software Change Through Design Maintenance”, Proceedings of the
International Conference on Software Maintenance, 1997.

[Boe00] B.W. Boehm, C. Abts, A.W. Brown, S. Chulnai, B.K. Clark, E. Horowitz, R. Madachy, D. Reefers, B.
Steece, “Software Cost Estimation With COCOMO II”, Prentice Hall, Upper Saddle River, New
Jersey, 2000.

[Cla07] B. Clark, B. Clark, “Added Sources of Costs in Maintaining COTS-Intensive Systems, CrossTalk, June
2007.

[Eic01] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, A. Mockus, “Does Code Decay? Assessing the
Evidence from Change Management Data”, IEEE Transactions on Software Engineering,
January 2001, pg. 1-12.

[Fer00] D.V. Ferens, D.S. Christensen, “Does Calibration Improve Predictive Accuracy”, CrossTalk, April 2000.

[Fis01] L. Fischman, “Evolving Function Points”, CrossTalk, February 2001.

[Lec06] D. Lechner, “Software Recapitalization Economics”, CrossTalk, November 2006.

[Leh96] M. M. Lehman, “Laws of Software Evolution Revisited”, Proceedings of the 5th European Workshop on Software Process
Technology, 1996, pg. 108-124.

[Leh97] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, “Metrics and Laws of Software Evolution – The Nineties View”,
Software Metrics Symposium, 1997, Proceedings., Fourth International, November 1997, pg. 20-32.

[Raj00] V.T. Rajlich, K.H. Bennett, “A Staged Model For the Software Life Cycle”, Computer, July 2000, pg 66-71.
[Sch05] J. Schofield, “The Statistically Unreliable Nature of Lines of Code”, CrossTalk, April 2005.

[SLC02] SOFTWARE LIFE CYCLE SUPPORT PLAN for the Tank, Combat, Full Tracked, 120-MM Gun ABRAMS, May 28, 2002.

Questions

Questions?

	Slide Number 1
	Goals
	Parametric Model Accuracy
	Introduction COCOMO II
	COCOMO II Scale Factors and Effort Multipliers
	Size Estimates
	Size Estimates – Source Lines of Code (SLOC)
	Size Estimates – Function Points
	Introduction to the Abrams Program
	Abrams Architecture
	Abrams Software Maintenance Team
	Abrams Software Maintenance Cost Drivers
	Adding New Functionality
	The Waterfall Model of Software Development
	Staged Model of �Software Life-Cycle
	Software Evolution
	Software Servicing
	Software Decay (rot)
	Software Decay (rot)
	Architectural Effects on a System
	Complexity Effects on a System
	How Abrams has Prevented Decay
	Staff Skill/Experience
	Effect of Skill/Experience on Software
	Productivity throughout Maintenance
	Software Faults
	Fixes Cause New Problems
	Fixing Old Problems Causes New Problems
	Incomplete Documentation
	Effects of Declining Documentation Detail and Quality
	COTS Obsolescence and C4I Interoperability
	COTS Drives Evolutionary Changes
	Safety Issues
	Slide Number 34
	References
	Questions

