Engineered Resilient Systems (ERS):
Insights and Achievements within the ERS Secretary of Defense Science and Technology (S&T) Priority

Dr. Robert Neches
Director, Advanced Engineering Initiatives
Office of the Deputy Assistant Secretary of Defense for Systems Engineering

15th Annual NDIA Systems Engineering Conference
San Diego, CA | October 25, 2012
Coming Attractions

Jeff Holland Speaks Next on ERS’ Current State and Future Directions

Key Concepts of ERS

- Consistent system and contextual info represented in many forms
- Mission effectiveness proven wrt operational context
- Large scale managed collaborative environment
- Exploration and analysis of appropriately sized tradespace
- Coupling of knowledge across engineering and business disciplines, acquisition activities, and representations

Major ERS Technical Areas

- Integrating Architecture
- Data/Knowledge Management and Training
- Virtual Collaborative Environment
- Interoperable Models, Simulations, and Data
- Usable Mission Context
- Risk/Opportunity, Reliability, and Trustworthiness
- Decision Support Technologies

Capabilities Delivered by the ERS

- Validation, Verification, and Demonstration for components, systems

ERS Timeline

<table>
<thead>
<tr>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
<th>FY 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Initiation</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Architecture Management</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>VOE</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Interoperability/STLM</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Mission Context</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DoD/Defense/Industrial Base</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>unmanned/earlier years</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ERS</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Demos & Transitions</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
</tbody>
</table>

Major Goals of ERS by 2022

- 75% time savings via reduction of rework, with resultant reductions in overall RDT&E costs
- 100-fold increase in number of parameters and operational scenarios considered in setting system requirements prior to Milestone A
- Quantification of risk of failure to meet changing mission requirements, in operationally relevant contexts, for systems under development
- Integration of Productivity, Lifecycle and cost estimating concepts continuously across the acquisition process
- Transformation of the acquisition process through risk mitigation, opportunity identification, productivity enhancement, and knowledge management

Architectural Concepts
This Presentation

The Prequel: How we got here....

- A brief description of ERS’ process and products
- How that process has refined DoD's thinking
- Key points from an OSD perspective
- Ongoing need to foster a ERS community of interest
Engineered Resilient Systems: Why

The country – literally – can’t afford not to

- Uncertain futures: engagements and mission needs change quickly and unexpectedly
 - Ties back to supporting Key Mission Areas in Quadrennial Defense Review

- Pace and availability of technology
 - Nation/state and transnational opponents can leverage the latest to constantly morph asymmetric threats – we must keep up

- Cost
 - Our opponents can will get us to bankrupt ourselves if we don’t spend wisely
Secretary of Defense Guidance on Science & Technology (S&T) Priorities FY13-17

Priority S&T Investment Areas:

1. Data to Decisions
2. Engineered Resilient Systems
3. Cyber Science and Technology
4. Electronic Warfare / Electronic Protection
5. Counter Weapons of Mass Destruction
6. Autonomy
7. Human Systems
Engineered Resilient Systems: A DoD-wide Activity

The Assistant Secretary of Defense for Research and Engineering, with the Department's S&T Executive Committee and other stakeholders, will oversee the development of implementation roadmaps for each priority area. These roadmaps will coordinate Component investments in the priority areas...
Engineered Resilient Systems vs. Systems 2020

Engineered Resilient Systems
- A science and technology *priority*
- Spans over 50 OSD, DARPA, Air Force, Army, and Naval programs
- Ten year plan
- Budget is all – and only – the sum of the program budgets
- Coordination makes it more than the sum of its parts

Systems 2020
- A specific *program*
- One of a number participating in ERS
- Five year span: GFY12-GFY16
- Has its own budget
- Executed by service labs and contractors
Engineered Resilient Systems (ERS)

An Early View of ERS

GOALS

- To transform the engineering design and development of defense systems by providing the technical methods, processes, technologies and tools to
 - Reinvigorate engineering science and technology to enable timely, affordable delivery of complex and adaptive systems
 - Develop advanced engineering tools for efficient, integrated design and development across the full range of product life cycles (from rapid fielding to traditional acquisitions)
 - Advance collaborative design and engineering capabilities for today’s environment where technologists and engineers span a diverse set of technical specialties often geographically distributed
 - Increase the efficiency and effectiveness of system design, test and transition to production of trustworthy systems

TECHNICAL PROGRAM

- Technologies and tools for engineering, design and development of cyber physical systems in key areas
 - **Systems Analysis Techniques** to address a wide range of system architecture and design drivers
 - **Concept Engineering** techniques and environments to allow for rapid conception, visualization and assessment of new material approaches designed and analyzed in a realistic operational context
 - **Architecture and Design Analysis Techniques and Tools** to allow for automated assessment of a wide range of architecture alternatives and platforms, for optimal design across multiple missions
 - **Integrated Modeling Environments** which enable integrated, virtual analysis to leverage technology to reduce cost/increase productivity
 - **Security Engineering** including scientific and engineering principles, methods and tools to identify vulnerabilities and minimize risks in hardware, software and firmware, incorporating and evaluating security as part of the system design

IMPACT

- Transforming engineering practices to efficiently create, field and evolve trusted defense systems which can readily adapt to the inevitable changes in threat, technology, and mission environments
- Advancing productivity of US industrial base to develop and adapt defense systems within the rapid time cycle of technology and mission changes
- Improving DoD responsiveness to user needs by developing and deploying new concepts, tools, and techniques for defense systems
- Developing trusted systems from untrusted components

METRICS

1. **Improved engineering and design**
 - **Development Agility**: Quality, timely development with an incomplete and changing set of system requirements
 - **Design Integration**: Concurrent assessment across design dimensions and trades, reducing time and surprise
 - **Productivity**: Design iteration and resolution within shorter design time

2. **Improved systems**
 - **Adaptive**: The ability to expand and enhance capabilities for future growth without having to make major changes in the infrastructure
 - **Effective**: Address the needs of the warfighters reliably and robustly
 - **Trusted**: Designed with resilience against current and emerging threats
Engineered Resilient Systems: What

Reshaping engineering from design through production to face 21st Century Challenges

- Ensure that we’re building the right things
- Minimize time and cost from design to delivery
- Embrace shifting requirements and manage them
Engineered Resilient Systems: How

- Do analysis of alternatives, requirements definition, and initial prototyping as collaborative, concurrent, iterative processes
 - Reduced time, with more opportunities to learn from efforts

- Enable larger tradespaces, keep alternative design options open longer, design and test for flexibility
 - Increased computing power & ubiquity allows trying more ideas

- Do the right tests -- at the right time -- to reduce risk
 - Ruling out infeasible approaches early frees up time and money
ERS: Tools and Technologies to Facilitate Adaptability & Trustability

ERS Technology Toolbox

1. Trustability: design patterns, analytic tools
2. Platform-Based analysis & architecting
3. Model-Based tools: analysis and simulation
4. Tying design, physical and computational testing
5. Tradespace exploration
6. Virtual environments & ConOps exploration

An Early View of ERS
Resilient Systems, Defined

A resilient system is trusted and effective out of the box in a wide range of contexts, easily adapted to many others through reconfiguration or replacement, with graceful and detectable degradation of function.

Research in Engineered Resilient Systems focuses on agile and cost-effective design, development, testing, manufacturing, and fielding of trusted, assured, easily-modified systems.
Transforming Engineering of Complex Systems

Engineering for resilience: robust systems with broad utility
- In a wide range of joint operations
- Across many potential alternative futures

Faster engineering, less rework = AFFORDABLE
Better informed decision-making = EFFECTIVE
Design/test for wider range of mission contexts = ADAPTABLE
Adaptable? Affordable? Effective?
Designing for Change Reasonably

A system that complies with thousands of specifications is not necessarily resilient

Each tool individually maximally effective, jointly inconvenient and unaffordable

A fairly adaptable system, effective in many situations, affordable enough to enable buying other tools as well

Adaptable, not affordable, not effective

Specifications
- Highly reconfigurable
- 7” W x 12” L
- 3 lbs, 8 oz for the bag alone
- $53 for the bag alone
- Still have to pay for the tools
- Which tools do you take along?

Specifications
- Highly reconfigurable
- <1” W x 4.85” L
- 8 oz
- $109

Specifications
- 85 tools
- 8.75” W x 2.75” L
- 2 lbs, 11 oz
- $1,300
- Lifetime warranty

A Bag of Tools

Spyderco ByrdRench

Swiss Army Knife
Engineered Resilient Systems: We No Longer have Time or Money to Handle Threats Without Making Systems More Effective, Affordable, & Adaptable

50 years of process reforms haven’t controlled time, cost and performance

- Prematurely reduces alternatives
- Decisions made with incomplete information
- Sequential, slow
- Information lost at every step
- Ad hoc requirements refinement

Effective
- Better informed

Affordable
- Faster engineering

Adaptable
- Wider range of mission contexts

New tools help engineers & users:
- Understand interactions
- Identify implications
- Manage consequences

Increased computational power and availability allow more flexibility in data exploitation and application of services
Key Technical Implications

System and environmental information represented in many forms

Mission effectiveness derived and tested wrt operational context

Coupling of knowledge across disciplines and representations

Exploration and analysis of huge tradespaces

Very-large-scale managed collaborative environment
Coming Attractions

Jeff Holland Speaks Next on Current State and Future Directions

Key Concepts of ERS
- Consistent system and contextual info represented in many forms
- Mission effectiveness proven wrt operational context
- Large scale managed collaborative environments
- Exploration and analysis of appropriately sized tradespace
- Coupling of knowledge across engineering disciplines, across domains and activities and representations

Major ERS Technical Areas
- Integrating Architecture
- Data/Knowledge Management and Training
- Virtual Collaborative Environment
- Interoperable Models, Simulations, and Data
- Usable Mission Context
- Risk/Oportunity, Reliability, and Trustworthiness
- Decision Support Technologies
- Validation, Verification, and Demonstration for components, systems

Major Goals of ERS by 2022
- 75% time savings via reduction of rework, with resultant reductions in overall RDT&E costs
- 100-fold increase in number of parameters and operational scenarios considered in setting system requirements prior to Milestone A
- Quantification of risk of failure to meet changing mission requirements, in operationally relevant contexts, for systems under development
- Integration of producibility, lifecycle and cost estimating concepts continuously across the acquisition process
- Transformation of the acquisition process through risk mitigation, opportunity identification, productivity enhancement, and knowledge management

Capabilities Delivered by the ERS

Architectural Concepts

Distribution Statement A – Approved for public release by OSR on 10/09/2012, SR Case # 13-S-0076 applies.
Analysis of Technology Planning Guidance FY13 and POM14 Data Call

• Analysis and conclusions based on review of programs identified via TPG Data Call, classified against current ERS technical thrust definitions
 – Classification performed by the author
 – Binning against topics is subjective and preliminary

• Total dollar value of programs identified by Services, DARPA and OSD is significant
Programs’ Centers of Gravity wrt ERS

(Binning Based on Most Recent Proposal for Technical Building Blocks)

<table>
<thead>
<tr>
<th>Army</th>
<th>Navy</th>
<th>Air Force</th>
<th>OSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Support</td>
<td></td>
<td></td>
<td>• Systems 2020</td>
</tr>
</tbody>
</table>
| **Risk and Reliability / Trustworthiness** | • Engineered Resilient Systems Basic Research
• Information and Complex Networks
• Trustworthy Electronics Assessment | • Meta / IFAB
• Self-Healing Mixed Signal Integrated Circuits (HEALICS) | |
| **Mission Context** | • C4ISR & Network Modernization
• Prognostics & Diagnostics for the Future Force
• Geo-Environmental Tactical Sensor Simulation | | |
| **Interoperability Modeling and Simulation / Data Feeds** | • Computational Research for Distributed Ground Vehicle | • Engineered Resilient Systems Basic Research
• Dynamical Systems, Optimization & Control
• Aero-Structure Interactions and Control
• Munition Aerodynamics, GN&C Advanced Weapons Systems Platform Integration
• Integrated Vehicle Energy Technology
• Laser Effects, Modeling and Simulation | • Adaptable Low Cost Sensors |
| **Data / Knowledge Management/Training** | • Advanced Sea Platform Science
• Advanced Sea Platform Technology
• Manufacturing Science and Technology
• Materials Chemistry
• Manufacturing Science
• Modular Photonics
• Mast Housing
• Power Electronics (6.1, 6.2)
• Platform Survivability Science | • Accelerated Insertion of Reliable Materials into Electronics
• Multidisciplinary Design and Analysis
• Munition System Effects Science Modeling & Simulation
• Integrated Computational Methods for Composite Materials
• Manufacturing of C4ISR Hardware
• Communications
• Mid-Wave Infrared Optics
• Solar Space Cells
• Manufacturing Research
• Residual Stress Engineering of Nickel Superalloy Structures | • Open Manufacturing
• Living Foundries
• Microphysiological Systems
• Manufacturable Gradient Index Systems (M-GRIN)
• Multifunctional Materials and Structures
• Low Cost Thermal Imager -- Manufacturing
• Gratings of Regular Arrays and Trim Exposures (GRATE)
• Maskless Nanowriter | • Automated and Rapid Boot Installation
• Additive Manufacturing |
| **Virtual Collaborative Environment** | | | • Fast, Adaptable Next Generation Ground Vehicle |
Observations and Questions

“Components we do right away, systems take a little longer”*

* With apologies to the Marine Corps

- Key issue: the real challenges lie at the systems level
 - Interdisciplinary interactions across components / subsystems
 - Interactions caused by physics among components, possibly without any functional or architectural connections
 - Emergent behavior
 - Dynamics
 - Example: interdisciplinary dynamics among actuators increased total RDTE costs by 30X over initial budget in a major aircraft program

- A lot of work in certain ERS thrust areas, but ...
 - Are we doing enough toward addressing systems-level problems?
 - Will investments in creating new technologies, devices or manufacturing methods improve or compound the systems problem?
 - How can Government and industry move to address the open areas?
Engineered Resilient Systems: A New Community of Interest

- Critical issues of National importance
- Substantial investments
- Significant questions and work remaining
- Tremendous grass roots support
 - Over thirty government experts contributing time
 - Over 400 government, industry and academic names on the interest list
- Highly distributed and decentralized
- Many participants just learning about each other
- Many disciplines involved

Communication and Information Exchange are Essential