DoD Program Protection

Kristen J. Baldwin
Principal Deputy
Office of the Deputy Assistant Secretary of Defense
for Systems Engineering, OUSD(AT&L)

NDIA Program Protection Summit / Workshop
Mclean, VA | May 20, 2014
Many Supply Chain Risks to Consider

- **Quality Escape**
 - Product defect/inadequacy introduced either through mistake or negligence during design, production, and post-production handling resulting in the introduction of deficiencies, vulnerabilities, and degraded life-cycle performance.

- **Reliability Failure**
 - Mission failure in the field due to environmental factors unique to military and aerospace environment factors such as particle strikes, device aging, hot-spots, electro-magnetic pulse, etc.

- **Fraudulent Product**
 - Counterfeit and other than genuine and new devices from the legally authorized source including relabeled, recycled, cloned, defective, out-of-spec, etc.

- **Malicious Insertion**
 - The intentional insertion of malicious hard/soft coding, or defect to enable physical attacks or cause mission failure; includes logic bombs, Trojan ‘kill switches’ and backdoors for unauthorized control and access to logic and data.

- **Anti-Tamper**
 - Unauthorized extraction of sensitive intellectual property using reverse engineering, side channel scanning, runtime security analysis, embedded system security weakness, etc.

- **Emerging Threats**
 - New threats, cyber security attacks, and trust issues that combine two or more threats.

DoD Program Protection focuses on risks posed by malicious actors.
Malicious Supply Chain Risk

• **Threat:**
 – Nation-state, terrorist, criminal, or rogue developer who gain control of systems through supply chain opportunities, exploit vulnerabilities remotely, and/or degrade system behavior

• **Vulnerabilities:**
 – All systems, networks, and applications
 – Intentionally implanted logic
 – Unintentional vulnerabilities maliciously exploited (e.g., poor quality or fragile code)

• **Consequences:**
 – Loss of critical data and technology
 – System corruption
 – Loss of confidence in critical warfighting capability; mission impact

Access points are throughout the lifecycle…

…and across multiple supply chain entry points
- Government
- Prime, subcontractors
- Vendors, commercial parts manufacturers
- 3rd party test/certification activities
Promulgated in DoDI 5200.44, requiring:

- Risk management of mission-critical function and component compromise throughout lifecycle of key systems by utilizing
 - **Criticality Analysis** as the systems engineering process for risk identification
 - **Countermeasures**, including supply chain risk management, software and hardware assurance, secure design patterns
 - **Testing and Evaluation**, to detect HW/SW vulnerabilities
 - **Intelligence analysis** to supplier acquisition strategies

- **DoD-unique application-specific integrated circuits (ASICs)** must be procured from trusted certified suppliers

- Plans and mitigations documented in program protection and information assurance activities
Program Protection
Interim DoDI 5000.02

- Program Protection is the integrating process for managing risks to DoD warfighting capability from foreign intelligence collection; from hardware, software, and cyber vulnerability or supply chain exploitation; and from battlefield loss throughout the system life cycle.
 - Also supports international partnership building and cooperative opportunities objectives by enabling the export of capabilities without compromising underlying U.S. technology advantages

- Program managers will employ system security engineering practices and prepare a PPP to guide their efforts and the actions of others to manage the risks to critical program information and mission-critical functions and components associated with the program
 - The PPP will be submitted for MDA approval at each Milestone review, beginning with Milestone A

- Program managers will describe in their PPP:
 - Critical Program Information, mission-critical functions, and critical components
 - Threats to and vulnerabilities of these items
 - Plans to apply countermeasures to mitigate associated risks
 - Plans for exportability and potential foreign involvement
 - The Cybersecurity Strategy and Anti-Tamper plan are included as appendices
PPP Methodology

Criticality Analysis
- Based upon mission threads, determine system critical components
- Analyze component vulnerability to malicious exploit
- Identify potential component suppliers

Supplier Threat Assessment
- DIA Conducts All-source Analysis and submits Threat Report to Component Focal Point

Countermeasures
- Determine countermeasures to address vulnerabilities: OPSEC, trusted suppliers, system security engineering, hardware/software assurance

Program Protection Plan
- Engineering risk/cost tradeoff analysis to determine system security requirements
- Acquisition strategy mitigations for supplier threat (e.g. blind buy, trusted source)
- Evaluate mitigations over time with intel, engineering, and test; update PPP at major milestones

Contractor
- RFP includes Supply Chain and security requirements
- Design reviews continually assess security risk

Test & Evaluation
- HW/SW vulnerability detection
- Contractor, DT, OT assessment of mitigations

Program Protection Activity - Integral Part of SE Process
PPP Approval Statistics
ACAT ID/IAM

<table>
<thead>
<tr>
<th>Year</th>
<th>PPPs Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2010</td>
<td>4</td>
</tr>
<tr>
<td>FY 2011</td>
<td>7</td>
</tr>
<tr>
<td>FY 2012</td>
<td>5</td>
</tr>
<tr>
<td>FY 2013</td>
<td>18</td>
</tr>
<tr>
<td>FY 2014 (to date)</td>
<td>13</td>
</tr>
</tbody>
</table>

FY13 PPPs by Milestone
- MS A: 8
- MS B: 4
- MS C: 5
- FRP/FDD: 4

FY13 PPPs by Service
- DoD: 6
- Army: 1
- Navy: 6
- Air Force: 5

FY13 PPPs by Domain
- Fixed Wing: 3
- ISR: 1
- Space: 1
- DBS: 2
- Rotary/UAS: 1
- Land: 4
- Ships: 1

Program Protection Outline and Guidance signed July 18, 2011
Security Engineering Challenges

• Incorporation of security engineering as a discipline of systems engineering
 – Engineering methodology, processes, and practices
 – System security engineering workforce

• Quantification of security risks
 – Vulnerability detection, and validated mitigation

• Articulation of security requirements
 – Threat-driven, evolving over time
 – Risk-based affordable trade off analysis; Measurable, testable system specifications

• Protection of technical data
 – Consequences of unclassified controlled technical information losses
 – Government and Industry mitigation of supply chain exploitation
Major Actions Underway

• Updating Program Protection guidance and training
 – Establishing a discipline for system security engineering

• Implementing DFARS Clause 252.204-7012, “Safeguarding Unclassified Controlled Technical Information”
 – Working with industry and contracting community
 – Providing guidance, working through procedures

• Joint Federated Assurance Center for HW/SW
 – Required by Section 937 of FY14 NDAA
 – Provides network of vulnerability analysis detection and mitigation support to programs; and R&D improvement (resource limited)

• Trusted microelectronics strategy to move beyond ASICs
 – FPGAs, Microprocessors, Logic Application Specific Standard Products, Memories, A-D Converters, Interface Chips

• Anti-Tamper Policy and Guidance updates
 – DoD Instruction for AT, AT Technology oversight, guidance updates
System Security Engineering

- **Industry plays an important role:**
 - Integrating SSE into SE methods, processes and tools
 - Investing in research, tools, and processes to protect systems and supply chains
 - Developing flexible security architectures for designed-in protections
 - Developing and applying SE and SSE skills (anti-tamper, cybersecurity, supply chain, software assurance, …)
 - Developing SSE metrics

- **Together we can begin to address the challenges and move toward a shared goal of delivering trusted systems**

Thank you to our hosts and attendees for supporting this Program Protection Summit and Workshop
Questions