2014 Diminishing Manufacturing Sources and Material Shortages (DMSMS) Conference Keynote Address

Mr. Robert A. Gold
Director, Engineering Enterprise
Office of the Deputy Assistant Secretary of Defense for Systems Engineering (ODASD(SE))
December 2, 2014
Outline

Source

- OSD Leadership

Acquisition Req’ts

- Program Protection Planning
- Counterfeit Parts
- Joint Federated Assurance Center (JFAC)
- Trusted Microelectronics
- Manufacturing

Initiative

- Better Buying Power 3.0
Better Buying Power (BBP) 3.0

- Interim release made on September 19, 2014
- Continues a focus on continuous improvement with a new emphasis on encouraging innovation
- Includes all BBP 2.0 initiatives that were not completed
 - Some initiatives continued without specific emphasis
 - Some initiatives continued without change or with some modifications
DMSMS Contributions to BBP 3.0

• Achieve dominant capabilities while controlling lifecycle costs by …
 – Attaining should cost targets based on DMSMS inputs to design
• Incentivize productivity in industry and government by …
 – Cultivating long-term relationships with suppliers
• Incentivize innovation in industry and government by …
 – Informing technology refresh and insertion planning with obsolescence projections
• Promote effective competition by …
 – Using design principles that make it easier to find alternative parts and suppliers
• Improve tradecraft in acquisition of services by …
 – Creating contract incentives to encourage industry to manage DMSMS issues
• Improve the professionalism of the total acquisition workforce by…
 – Identifying risk-based approaches for proactive DMSMS monitoring
Program Protection Planning
Protecting Acquisition Programs

Program Protection Planning

Interim DoDI 5000.02

DoDI 5200.39

Technology

What: Leading-edge research and technology
Who Identifies: Technologists, System Engineers
ID Process: CPI identification
Threat Assessment: Foreign collection threat informed by Intelligence and Counterintelligence (CI) assessments
Countermeasures: AT, classification, export controls, security, foreign disclosure, and CI activities
Focus: “Keep secret stuff in” by protecting any form of technology

DoDI 5200.44

Components

What: Mission-critical elements and components
Who Identifies: System Engineers, Logisticians
ID Process: Criticality analysis
Threat Assessment: DIA SCRM TAC
Countermeasures: Hardware and software assurance, SCRM, anti-counterfeit, Trusted Foundry, Trusted Suppliers, etc.
Focus: “Keep malicious stuff out” by protecting key mission components

DoDI 8500.01

Information

What: Information about applications, processes, capabilities and end-items
Who Identifies: All
ID Process: CPI identification, criticality analysis, and classification guidance
Threat Assessment: Foreign collection threat informed by Intelligence and CI assessments
Countermeasures: Cybersecurity, classification, export controls, security, etc.
Focus: “Keep critical information from getting out” by protecting data

Protecting Warfighting Capability Throughout the Lifecycle
Program Protection
Integrated Supply Chain Policy

DoDI 5200.44, Protection of Mission Critical Functions to Achieve Trusted Systems and Networks (TSN)
 - Requires AT&L to develop a strategy for managing risk in the supply chain for integrated circuit-related products and services (e.g., FPGAs, printed circuit boards) that are identifiable to the supplier as specifically created or modified for DoD (e.g., military temperature range, radiation hardened).

DoDM 4140.01 DoD Supply Chain Materiel Management Procedures, Volume 3
 - Requires quality assurance methods including contractor selection and qualification programs; quality requirements; pre-award surveys; Government inspection; and testing.
 - Quality assurance techniques and testing should stress conforming Critical Application Item (CAI) to contract and technical requirements.

Security risk criteria should be added to safety, reliability, etc. for CAI designation in the supply chain to assist in managing microelectronics CCs throughout the acquisition lifecycle.
Supply Chain Risk Countermeasures

Opportunity to Target Surreptitiously

Vulnerability & Threat Analysis

Criticality Analysis

Consequence for Life & Mission

System Level Verification Test

Product Level Acceptance Test

Increased Mitigation Investment

Countermeasures selected based on Risk

Organic Design

DMEA Accredited Supplier**

DLA Qualified Manufacturer List (QML)

Qualified Supplier List of Distributors (QSLD)

Anti-Counterfeit Procedure & Inspections**

IUID** Traceability (DARPA SHIELD, DLA DNA, etc.)

Original Component Manufacturer (OCM)

OCM Authorized Distributor

Anonymity Procurement Practice

Commercial Practice

Receipt Inspection

System Level Verification Test

Physical Verification (JFAC*)

Functional Verification (JFAC*)

Organic Foundry

* Joint Federated Assurance Center (JFAC)

**DoD Instructions in Place

Commercial Practice

Physical Verification (JFAC*)

Functional Verification (JFAC*)

Organic Foundry

* Joint Federated Assurance Center (JFAC)

**DoD Instructions in Place
Spectrum of Supply Chain Risks

Quality Escape
Product defect/inadequacy introduced either through mistake or negligence during design, production, and post-production handling resulting in the introduction of deficiencies, vulnerabilities, and degraded life-cycle performance.

Reliability Failure
Mission failure in the field due to environmental factors unique to military and aerospace environment factors such as particle strikes, device aging, hot-spots, electro-magnetic pulse, etc.

Fraudulent Product
Counterfeit and other than genuine and new devices from the legally authorized source including relabeled, recycled, cloned, defective, out-of-spec, etc.

Malicious Insertion
The intentional insertion of malicious hard/soft coding, or defect to enable physical attacks or cause mission failure; includes logic bombs, Trojan ‘kill switches’ and backdoors for unauthorized control and access to logic and data.

Reverse Engineering
Unauthorized extraction of sensitive intellectual property using reverse engineering, side channel scanning, runtime security analysis, embedded system security weakness, etc.

Information Losses
Stolen data provides potential adversaries extraordinary insight into US defense and industrial capabilities and allows them to save time and expense in developing similar capabilities.

DoD Program Protection

Escape

Reliability

Fraudulent Product

Malicious Insertion

Reverse Engineering

Information Losses

DoD Program Protection focuses on risks posed by malicious actors
Counterfeit Parts
Counterfeit / Clone Component Threat Space

- Hardware Trojans
- IP Theft
- Reliability & Mission Risk
- ITAR Circumvention
- Loss of Sales income

Threat Level: Most Serious

Exploit:
- Overproduction by vendor
- Blacktop / Recycling
- Test fails sold
- Copies from RE
- Clones, RE & redesign

Chart Courtesy Of DARPA
Current and Emerging Requirements

- **DoDI 4140.67 DoD Counterfeit Prevention Policy**
 - Requires procurement of *critical* electronic parts from suppliers that meet risk-based criteria
 - Applies additional measures when such suppliers not available

- **National Defense Authorization Act**
 - Fiscal Year 2012 Section 818 – Detection and Avoidance of Counterfeit Electronic Parts
 - Fiscal Year 2013 Section 833 – Contractor Responsibilities in Regulations Relating to Detection and Avoidance of Counterfeit Electronic Parts

- **Emerging regulations**
 - FAR 2012-032 “Higher Level Quality Requirements”
 - DFARS 2012-D055 “Detection and Avoidance of Counterfeit Electronic Parts”
 - FAR 2013-002(proposed) “Expanded Reporting of Nonconforming Items”
 - DFARS 2014-005 (in draft) “Detection and Avoidance of Counterfeit Electronic Parts – Further Implementation”
GIDEP Reporting
(Information Sharing Portal)

- Most companies and agencies have some sort of “Quality Deficiency Reporting System”

- GIDEP is a way of linking the knowledge in these systems together for the “collective good”

- Mandatory reporting of non-conformances (including suspected or confirmed counterfeits)

- Modernize GIDEP system (entry; storage; retrieval)

- Efficient correlation of information

http://www.gidep.org/
Joint Federated Assurance Center
NDAA 2014 directed DoD to “provide for the establishment of a joint federation of capabilities to support the trusted defense system needs…to ensure security in the software and hardware developed, acquired, maintained, and used by the Department”

For Hardware and Software Assurance:

- Establish a federation of capabilities to support program protection planning and execution
- Support program offices across the life cycle by identifying and facilitating access to expertise, capabilities, policies, guidance, requirements, best practices, contracting language, training, and testing support
- Coordinate needs and findings with research
- Procure, manage, and distribute enterprise licenses for assurance tools

Status:

- JFAC Charter has been staffed and is in-process for DEPSECDEF signature
- 937 Congressional Report in-process and on track
- Working the concept of operations, DoD assurance capability map, and capability gap analyses
- Initial capability on track for 2015
Hardware Threats and Mitigations

- We must better understand the SCOPE and NATURE of the threat

Verifying proper construction and operation
- Scanning Electron Microscopy
- Special Electrical Test
- Laser Scanning Microscopy
- Transmission Electron Microscopy
- Time-of-Flight Secondary Ion
- Mass Spectrometry
- Verification and Validation (ASIS & FPGA)

Looking for internal identifiers
- Scanning Acoustic Microscopy
- Traditional Electrical Test
- Non-traditional Electrical Test

Looking for re-packaging
- Visual Inspection
- Solvents Testing
- X-Ray Fluorescence
- X-Ray Inspection

High percentage of fraudulent parts are found in this category, but that’s where almost all assessment occurs
Trusted Microelectronics
Problem Statement

Vulnerabilities in supply chain could lead to malicious logic insertions

- **Current DoD-unique ASICs used in DoD systems are procured via a Trusted Supplier chain per DoD policy**
 - Accounts for approximately 10% of logic-bearing DoD Integrated Circuit (IC) products used in DoD systems
- **Approximately 72% of DoD ICs are non-ASICs; largely Field Programmable Gate Array (FPGA) devices**
 - DoD has no current trusted supply chain for FPGAs
 - FPGAs include COTS and Military grade products
 - Much of the FPGA value chain is off-shore, e.g., design, fabrication, programming services, testing and packaging
- **FPGAs that are programmed by DoD end-users may face Software Assurance (SwA) risks in FPGA bitstream programming tools, environment, and processes**
- **Bottom line: ASICs and FPGAs are not the only ICs of concern (must address more than ASIC foundry operations)**
Assured Microelectronics

- Beyond Application-Specific Integrated Circuits (ASICs)
- Identifying critical functions and components
- Analyzing risk and identifying mitigations
- Leveraging existing policies and guidance

Trusted Foundry Program

- Only method to obtain quick-turn, Trusted microelectronics (protecting integrity, confidentiality and availability)
 - Mitigates risk of hardware Trojan insertion per DoDI 5200.44
 - Protects Critical Program Information per DoDI 5200.39
- Major elements
 - Long term contract to secure Trusted access to leading-edge foundry technology
 - Accreditation of Trusted Suppliers across the entire supply chain
- Trusted Suppliers must meet a comprehensive set of security and quality criteria
 - Facility Clearance, FOCI adjudication/mitigation
 - Cleared Chain of Custody
 - Information System Security
 - Configuration Management
 - Quality
 - Manufacturing Contingency Plan
 - Scrap Controls
- Equally funded by NSA and DMEA

- Cost: Trusted services ~18% more than non-ITAR services
- Schedule impact: zero to less than zero (some suppliers give priority to Trusted services)
- Caveat: Trusted services must be explicitly requested from a designated POC at the Trusted supplier

As of 28 Aug 2014
Manufacturing
Aerospace Standard 6500
Manufacturing Management Program

• AS 6500 Published Nov 13, 2014

• Goal
 – Encourage the use of best manufacturing management practices aimed at promoting the timely development, production, modification, fielding, and sustainment of affordable products.

• References SAE STD-0016 “Standard for Preparing a DMSMS Management Plan” and SD-22 “DMSMS Guidebook”

• DMSMS Para 5.4.1(c) requires:
 – Development and implementation of a DMSMS Management Plan (entire program including support equipment)
 – Establishment of a risk-based DMSMS monitoring system
 – Identification of diminishing manufacturing sources and obsolete materials used or planned to be used in the program
 – Development of plans and procedures to mitigate the risk of obsolete parts
Assessing Manufacturing Risk

- **Interim DoDI 5000.02**
 - “The Program Manager will ensure manufacturing and producibility risks are identified and managed throughout the program’s life cycle.”

- **DoD Risk Management Guide (Update Underway)**

- **Current practice: MRLs**
 A. Technology and the Industrial Base
 B. Design
 C. Cost and Funding
 D. Materials (Availability, SCM)
 E. Process Capability and Control
 F. Quality Management
 G. Manufacturing Workforce
 H. Facilities
 I. Manufacturing Management

Example: “Components assessed for future DMSMS Risk”

http://www.dodmrl.org
Systems Engineering: Critical to Defense Acquisition

Defense Innovation Marketplace
http://www.defenseinnovationmarketplace.mil

DASD, Systems Engineering
http://www.acq.osd.mil/se