
Jin Zhu
PhD Candidate
Civil and Environmental Engineering
Florida International University
jzhu006@fiu.edu

Dr. Ali Mostafavi
Assistant Professor
OHL School of Construction
Florida International University
almostaf@fiu.edu
Problem Statement

Performance inefficiency: A major challenge in engineering projects

- Performance failures significantly affect the efficiency of investments in engineering projects across different industries:
 - Cost overruns
 - Schedule delays
 - Quality deficiencies
Many engineering projects cannot meet their performance goals.

1 out of 20 construction projects met both authorized cost and schedule goals

1 out of 10 large software development projects can be identified as successful
A paradigm shift in assessment of engineering projects based on the proper conceptualization of engineering projects is needed.
Complex engineering projects are systems-of-systems. The objective of this study is to propose a system-of-systems framework for the assessment of complex engineering projects.

Traits of SoS (Maier, 1998)
- Operational Independence
- Managerial Independence
- Emergent Properties
- Evolutionary Development
- Geographic Distribution

Design process
Production/construction process
Finance process
Procurement process
Safety process
An engineering project system-of-systems (EPSoS) framework is proposed based on two principles (DeLaurentis and Crossley, 2005): Base-level Abstraction and Multi-level Aggregation.
Three types of entities are abstracted at the base level.

Human agent
Entities who conduct production work, process information and make decisions

Resource
Entities that facilitate production work, information processing and decision making

Information
Knowledge or facts that affect dynamic behaviors of human agents
Examples of attributes of base-level entities:

<table>
<thead>
<tr>
<th>Base-level entity types</th>
<th>Classification</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Agent</td>
<td>Production work agent</td>
<td>Productivity, attention allocation</td>
</tr>
<tr>
<td></td>
<td>Information processing agent</td>
<td>Response time</td>
</tr>
<tr>
<td></td>
<td>Decision making agent</td>
<td>Risk attitude</td>
</tr>
<tr>
<td>Resource</td>
<td>Material</td>
<td>Quantity, quality, cost</td>
</tr>
<tr>
<td></td>
<td>Equipment</td>
<td>Productivity, cost</td>
</tr>
<tr>
<td>Information</td>
<td>Existing information</td>
<td>Completeness, accuracy</td>
</tr>
<tr>
<td></td>
<td>Emergent information</td>
<td>Completeness, accuracy, recency</td>
</tr>
</tbody>
</table>
Four levels in engineering projects

Base level
- Activity1
- Activity2
- Activity3

Process level
- Design
- Procurement
- Production
- Finance

Activity level
- resilience
- agility
- vulnerability
- adaptive capacity

Project level
The application and effectiveness of the proposed EPSoS framework is shown in a complex construction project.

Study 1
How do the attributes and micro behaviors of base-level entities affect project performance?

Study 2
How to get a better understanding of project behaviors under uncertainty via emergent properties?
Case Description

- A complex construction project (Ioannou and Martinez, 1996)
- 1600-meter tunnel
- Varied ground conditions (Good, Medium, or Poor)
- New Austrian Tunneling Method (NATM)
- Adjusting design during the construction phase based on the changes of the ground condition
Study 1: Investigate the impacts of attributes and micro behaviors of base-level entities on project performance

Step 1: Abstract base-level entities and attributes

Step 2: Develop an agent-based model

Step 3: Conduct simulation experiments

Step 4: Analyze simulation results
Application Example

Study 1: Base-level entities

Step 1: Abstract base-level entities and attributes

<table>
<thead>
<tr>
<th>Category</th>
<th>Base-level entities</th>
<th>Classification</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Agent</td>
<td>Designer</td>
<td>Production/information processing/decision-making</td>
<td>response time, risk attitude</td>
</tr>
<tr>
<td></td>
<td>Workers</td>
<td>Production/information processing</td>
<td>Productivity, cost, response time</td>
</tr>
<tr>
<td>Resource</td>
<td>Excavator</td>
<td>Equipment</td>
<td>Productivity, cost</td>
</tr>
<tr>
<td></td>
<td>Support</td>
<td>Material</td>
<td>Quantity, quality, cost</td>
</tr>
<tr>
<td>Information</td>
<td>Historical data</td>
<td>Existing information</td>
<td>completeness, accuracy</td>
</tr>
<tr>
<td></td>
<td>Current ground condition</td>
<td>Emergent information</td>
<td>completeness, accuracy, recency</td>
</tr>
<tr>
<td></td>
<td>Step length</td>
<td>Emergent information</td>
<td>completeness, accuracy, recency</td>
</tr>
</tbody>
</table>
Application Example

Study 1: Base-level entities

Step 2: Develop an agent-based model

Class diagram

Sequence diagram
Application Example

Study 1: Base-level entities

Step 3: Conduct simulation experiments

<table>
<thead>
<tr>
<th>Risk attitude</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk seeking</td>
<td>Design decisions are made for better outcomes with higher levels of uncertainty</td>
</tr>
<tr>
<td>Risk neutral</td>
<td>Design decisions are not affected by the degree of uncertainty</td>
</tr>
<tr>
<td>Risk averse</td>
<td>Design decisions are made for outcomes with lower levels of uncertainty</td>
</tr>
</tbody>
</table>

Simulation experiment example:
changing the risk-attitude of designer
Study 1: Base-level entities

Step 4: Analyze simulation results

- A risk-seeking designer improves project time, but increases the near-miss sections.
Study 2: Investigate emergent properties arising from interactions and interdependencies in projects

Application Example
Study 2: Emergent properties

- Step 1: Abstract project meta-network
- Step 2: Translate uncertainty
- Step 3: Assess vulnerability
- Step 4: Evaluate planning strategies
Step 1: Abstract project meta-network

<table>
<thead>
<tr>
<th></th>
<th>Agent</th>
<th>Information</th>
<th>Resource</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td>who works with and reports to whom</td>
<td>who knows what</td>
<td>who can use what resource</td>
<td>who is assigned to what activity</td>
</tr>
<tr>
<td>Information</td>
<td>what information is related to other information</td>
<td>what information is needed to use what resource</td>
<td>what information is needed for what activity</td>
<td></td>
</tr>
<tr>
<td>Resource</td>
<td>what resource is used for other resources</td>
<td></td>
<td>what resource is needed for what activity</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td></td>
<td>what activity is related to other activities</td>
<td></td>
</tr>
</tbody>
</table>
Step 2: Translate uncertainty

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Examples</th>
<th>Network Perturbation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent-related</td>
<td>- Staff turnover</td>
<td>![Agent Node]</td>
</tr>
<tr>
<td></td>
<td>- Dereliction of duty</td>
<td>![Agent Node]</td>
</tr>
<tr>
<td></td>
<td>- Safety accident or injury</td>
<td>![Agent Node]</td>
</tr>
<tr>
<td>Resource-related</td>
<td>- Defective materials</td>
<td>![Resource Node]</td>
</tr>
<tr>
<td></td>
<td>- Equipment breakdown</td>
<td>![Resource Node]</td>
</tr>
<tr>
<td></td>
<td>- Late delivery of material</td>
<td>![Resource Node]</td>
</tr>
<tr>
<td>Information-related</td>
<td>- Unclear scope/design</td>
<td>![Information Node]</td>
</tr>
<tr>
<td></td>
<td>- Limited access to required knowledge</td>
<td>![Information Node]</td>
</tr>
<tr>
<td></td>
<td>- Miscommunication</td>
<td>![Information Node]</td>
</tr>
</tbody>
</table>
Step 3: Assess Vulnerability (Carley and Reminga, 2004)

Network Efficiency
- the percentage of activities that can be completed by the agent assigned to them based on whether the agents have the requisite information and resources

Project Vulnerability
- the extent of the changes in network efficiency due to uncertainty-induced perturbations

Vulnerability assessment of project meta-networks
Uncertain environment of the tunneling project

<table>
<thead>
<tr>
<th>Uncertain Events</th>
<th>Perturbation</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dereliction of duty</td>
<td>Agent-related</td>
<td>Medium</td>
</tr>
<tr>
<td>Staff turnover</td>
<td>Agent-related</td>
<td>Low</td>
</tr>
<tr>
<td>Inadequate information</td>
<td>Information-related</td>
<td>Medium</td>
</tr>
<tr>
<td>Equipment breakdown</td>
<td>Resource-related</td>
<td>Medium</td>
</tr>
<tr>
<td>Late delivery of material</td>
<td>Resource-related</td>
<td>High</td>
</tr>
<tr>
<td>Power system failure</td>
<td>Multiple resource-related</td>
<td>Medium</td>
</tr>
<tr>
<td>Severe weather</td>
<td>Agent and resource-related</td>
<td>Low</td>
</tr>
<tr>
<td>Economic fluctuation</td>
<td>Agent and resource-related</td>
<td>Low</td>
</tr>
</tbody>
</table>

Boxplot of Project Organizational Vulnerability in the Base Scenario

Mean: 0.4111
StDev: 0.1092
Step 4: Evaluate planning strategies

Examples of planning strategy reflections in project meta-networks

<table>
<thead>
<tr>
<th>Task Assignment</th>
<th>Generalization of labor</th>
<th>Division of labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision-making authority</td>
<td>Centralized decision-making</td>
<td>Decentralized decision-making</td>
</tr>
<tr>
<td>Resource management</td>
<td>Redundancy</td>
<td>Non-redundancy</td>
</tr>
</tbody>
</table>

- **Agent Node**
- **Resource Node**
- **Information Node**
- **Activity Node**
Step 4: Evaluate planning strategies

Scenarios by combinations of planning strategies

<table>
<thead>
<tr>
<th>Planning Strategies</th>
<th>BS</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task assignment</td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Generalization of labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division of labor</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision-making authority</td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Centralized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decentralized</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Resource management</td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Non-redundancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redundancy</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

Project meta-networks of the tunneling project under different planning scenarios without perturbations

Base Scenario BS

Comparative Scenario S1

Comparative Scenario S2

Comparative Scenario S3
Application Example

Study 2: Emergent properties

Step 4: Evaluate planning strategies

- **Comparison of Project Organizational Vulnerability**
 - **Comparative Scenarios:**
 - Comparative Scenario 1
 - Comparative Scenario 2
 - Comparative Scenario 3
 - Base Scenario
 - **Vulnerability Analysis:**
 - **Project Organizational Vulnerability under Different Planning Strategies**
 - **95% CI for the Mean**
 - Base Scenario: 0.4111 ± 0.1092
 - Comparative Scenario 1: 0.343 ± 0.1186
 - Comparative Scenario 2: 0.4097 ± 0.1267
 - Comparative Scenario 3: 0.3611 ± 0.1235
 - **Effectiveness Calculation:**
 - **Effectiveness of planning strategies in mitigating project vulnerability compared to the base scenario**
 - **Division of Labor:** 16.57%
 - **Redundancy in Resource:** 12.16%
 - **Decentralized Decision-making:** 0.34%

Individual standard deviations were used to calculate the intervals.

Effectiveness of planning strategies in mitigating project vulnerability compared to the base scenario
The results from the application example show that the EPSoS framework is capable of facilitating investigation of: (1) micro behaviors of base-level entities and (2) project emergent properties using:

- **A proper level of abstraction**
 - Capture micro behaviors and interdependencies at the base-level

- **A bottom-up aggregation approach**
 - Capture emergent properties as macro behaviors at the project level

- **A dynamic perspective**
 - Consider the impacts of uncertainty and dynamic changes
Concluding Remarks

Body of knowledge
- A new theoretical lens for assessment of engineering projects
- First of its kind to assess the performance measures at the project level based on the micro-behaviors and interdependencies of project entities at the base level
- Exploration of emergent properties

Body of practice
- Design more resilient and less vulnerable engineering projects in pre-planning phase
- Develop contingency plan based on the expected performance loss and recovery
Reference

The research team at I-SoS Research Group focuses on solving the challenges pertaining to the sustainability and resilience of civil systems at the interface of the infrastructure, economy, environment and society based on System-of-Systems (SoS) analysis, computational simulation, and quantitative data analysis models.

http://www.isos-lab.com/
Thank You

Jin Zhu
PhD Candidate
Civil and Environmental Engineering
Florida International University
jzhu006@fiu.edu

Dr. Ali Mostafavi
Assistant Professor
OHL School of Construction
Florida International University
almostaf@fiu.edu

Infrastructure System-of-Systems (I-SoS) Research Group
http://www.isos-lab.com/