Towards Technical Reference Frameworks to Support Open System Architecture Initiatives

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

Professor of Computer Science
Institute for Software Integrated Systems
Vanderbilt University

Principal Researcher
Software Engineering Institute
Carnegie Mellon University

The System of Systems Engineering Collaborators Information Exchange
December 15th, 2015
DoD Strategic Acquisition Goals

- Deliver *enhanced* integrated warfighting capability at *lower cost* across the enterprise & over the lifecycle
DoD Strategic Acquisition Goals

- *Reduce* cycle time of initial acquisition & new technology insertion
DoD Strategic Acquisition Goals

• Establish *sustainable* business & workforce strategies to support the other DoD acquisition goals
DoD Strategic Acquisition Goals

Alleviating the complexities & costs of software throughout the lifecycle is crucial to meeting DoD strategic acquisition goals.
DoD cannot achieve its strategic acquisition goals when it must support too many software development activities, each implementing a unique solution.
A Sampling of DoD Software Challenges

Drawbacks with stove-pipes
- Proprietary & vendor-locked
- Redundant to develop … sustain
- Brittle & vulnerable to exploits
- Non-scalable tactical performance
A Sampling of DoD Software Challenges

Drawbacks with stove-pipes:
- Proprietary & vendor locked
- Redundant to develop & sustain
- Brittle & vulnerable to exploits
- Non-scalable tactical performance

I WANT YOU TO HELP BAIL ME OUT
Key tenets of OSA initiatives

- Published portable interfaces, protocols, & data formats
- Open standards
- Full design disclosure
- Modular, loosely coupled components
- An intentionally defined software/systems architecture
Evolution of DoD Combat Systems wrt the OSA Paradigm

In practice, production combat systems vary in terms of their progression along the continuum shown above.

See blog.sei.cmu.edu/post.cfm/architectural-evolution-dod-combat-systems-359
Ad hoc architectures involve the separate development of each warfighter capability (such as BM/C4I, sensors, weapons, etc.) in a vertically stove-piped manner that lacks crisply-defined module boundaries.
Evolution of DoD Combat Systems wrt the OSA Paradigm

Modular architectures define some crisp boundaries within their stove-pipes & transition away from top-down function-oriented decomposition to a more object-oriented & component-based decomposition.
Evolution of DoD Combat Systems wrt the OSA Paradigm

MOSA was the result of a well-defined, public standard approach with modular interfaces, designated key interfaces, & select open standards that allow programs a choice of vendors when a systems needs to be updated.
Layered architectures emerged as COTS began to mature & DoD programs began to purchase COTS directly from vendors & use them to layer systems so that they were no longer built entirely by integrators.
Evolution of DoD Combat Systems wrt the OSA Paradigm

Common infrastructure emerged due to the maturation of standards-based COTS middleware, operating systems, networks, & hardware.
Common data capabilities enable DoD programs to describe the information they have, the format of that information, the relationships, & dependencies among data types.
Common domain capabilities focus on the development of horizontally reusable services & components that address higher layers of the system stack.
Common domain capabilities via product-line architectures provides services that war fighters can reuse by building existing/new code atop common domain capabilities & allowing users to access/extend capabilities via systematic reuse.
Evolution of DoD Combat Systems wrt the OSA Paradigm

Key Points

- OSA’s been most successful at domain-independent *infrastructure* layer(s)
 - e.g., COTS products based on open standards like TCP/IP, POSIX, CORBA, DDS, etc.
Evolution of DoD Combat Systems wrt the OSA Paradigm

Key Points

• OSA’s been most successful at domain-independent infrastructure layer(s)

• Defining & adopting open standards for domain-specific layer(s) provide biggest payoff for OSA wrt reducing total ownership costs
Key Points

- OSA’s been most successful at domain-independent *infrastructure* layer(s)
- Defining & adopting open standards for domain-specific layer(s) provide biggest payoff for OSA wrt reducing total ownership costs
- Some system components may never be realized via open standards & COTS
 - There’s still significant value in publishing open domain-specific interfaces
 - e.g., help spur innovation, encourage competition, & avoid vendor-lock
1. Divide programs of record into multiple *technical reference frameworks* that share common design & operational capabilities

The Naval Open Systems Architecture Strategy (11/11/2012) identifies TRFs as “integrated sets of modular components that define common architectures for families of related warfighting systems to support improved competition & enable enterprise reuse”
1. Divide programs of record into multiple *technical reference frameworks* that share common design & operational constraints.

2. Identify commonalities & incrementally evolve the technical reference frameworks.
1. Divide programs of record into multiple technical reference frameworks that share common design & operational constraints

2. Identify commonalities & incrementally evolve the technical reference frameworks

3. Identify commonalities that span technical reference frameworks

Warning: amounts are only for illustrative purposes & shouldn’t be construed as representative for specific domains
1. Divide programs of record into multiple technical reference frameworks that share common design & operational constraints

2. Identify commonalities & incrementally evolve the technical reference frameworks

3. Identify commonalities that span technical reference frameworks

4. Expand commonality in both the technical reference frameworks & the broader OSA technical infrastructure
 • This is a stretch goal

How Do We Get There From Here?
Some Examples of OSA Success Thus Far

OSA’s more likely to succeed when there’s alignment of:

- Managers
- Perceptions of Risk Prudence
- Technical Maturity
- Business Incentives
Some Examples of OSA Success Thus Far

- The next 5 slides show examples of OSA successes in the domain-independent & domain-specific layers.
- The examples are color coded as:
 - **Dark green** – solid progress
 - **Light green** – some success, but more remains to be done
 - **Orange** – a work-in-progress, e.g., not widely fielded in programs of record (yet)
Some Examples of OSA Success Thus Far

- Domain-Specific Services
- Common Middleware Services
- Distribution Middleware
- Host Infrastructure Middleware
- Operating Systems & Protocols

Domain-independent commonality

Provide mechanisms to manage endsystem resources, e.g., CPU scheduling, data storage, IPC, & memory management.
Some Examples of OSA Success Thus Far

Domain-independent commonality

Encapsulates & enhances native OS mechanisms to create reusable network programming components
Some Examples of OSA Success Thus Far

- Simplifies the programming of distributed components & automates/extends OS mechanisms end-to-end

Domain-independent commonality

Domain-Specific Services
Common Middleware Services
Distribution Middleware
Host Infrastructure Middleware
Operating Systems & Protocols

DDS
CORBA

{JSON}

Apache <Web Services /> Project
Some Examples of OSA Success Thus Far

Domain-independent commonality

Defines reusable domain-independent services that simplify robust distributed computing
Some Examples of OSA Success Thus Far

Domain-specific commonality

Tailored to designated warfighter domains, e.g., C4ISR, avionics, air & missile defense, etc.
Some Impediments to Success of OSA Initiatives

Despite substantial technical advances during the past decade, affordable & dependable OSA-based solutions remain elusive
Glacially slow contracting processes impede timely delivery of capabilities that meet mission needs
Some Impediments to Success of OSA Initiatives

Contracting models that assume requirements can be fully defined up front are expensive when inevitable changes occur.
Quality-of-service (QoS) suffers when OSA initiatives use COTS standards & products that are ill-suited for mission-critical DoD combat systems.
“Serialized phasing” of app & infrastructure development postpones identifying design flaws that degrade system QoS until late in lifecycle, i.e., during final system integration.
Rigid adherence to obsolete standards & ossified reference architectures limits application capabilities & impedes OSA technology refresh
At the heart of these problems is the lack of an holistic approach that incentivizes competition in a targeted manner & aligns & balances key business, management, & technical drivers at scale.
Joint Tactical Radio System (JTRS) was a poster child for poor alignment between business, management, & technical drivers.
Some key JTRS problems

- **Business** model disincentivized timely completion of design phase

Joint Tactical Radio System (JTRS) was a poster child for poor alignment between business, management, & technical drivers

What Can We Learn from Our Failures?
What Can We Learn from Our Failures?

Joint Tactical Radio System (JTRS) was a poster child for poor alignment between business, management, & technical drivers

Some key JTRS problems

- **Business** model disincentivized timely completion of design phase
- “Tragedy of the Commons” effects complicated program management
- e.g., acquisition model fostered significant “requirements creep”

Managers Perceptions of Risk Prudence

Business Incentives

Technical Maturity
Some key JTRS problems

• **Business** model disincentivized timely completion of design phase

• “Tragedy of the Commons” effects complicated program management

• Software Communication Architecture (SCA) **technical** standard was under-specified

• Impeded portability & interoperability

Joint Tactical Radio System (JTRS) was a poster child for poor alignment between business, management, & technical drivers
How Can OSA Initiatives Be More Successful?

Key is Architecture-Led Iterative & Incremental Development (ALIID) approach

OSA

- Strong S&T Connections to Reduce Risk
- Mastery of ALIID Lifecycle Methods
- Understand the Strategic Role of Software
- Managed Industry/Government Consortia
- Lightweight Contracting Models
- Effective Data Rights & Licensing Models
- Systematic Multi-use Expertise
- ALIID Design Expertise
- Automated Conformance & Regression Test Suites

See blog.sei.cmu.edu/post.cfm/looking-ahead-the-sei-technical-strategic-plan
How Can OSA Initiatives Be More Successful?

Key is Architecture-Led Iterative & Incremental Development (ALIID) approach

- Strong S&T Connections to Reduce Risk
- Mastery of ALIID Lifecycle Methods
- Understand the Strategic Role of Software
- Managed Industry/Government Consortia
- Systematic Multi-use Expertise
- Automated Conformance & Regression Test Suites
- ALIID Design Expertise
- Effective Data Rights & Licensing Models
- Lightweight Contracting Models

Business Drivers
Achieving effective competition & broad acceptance of OSA economic aspects
How Can OSA Initiatives Be More Successful?

Key is Architecture-Led Iterative & Incremental Development (ALIID) approach

Management Drivers
Ensuring effective leadership & guidance of OSA initiatives to control risk
How Can OSA Initiatives Be More Successful?

Key is Architecture-Led Iterative & Incremental Development (ALIID) approach

Technical Drivers
Foundations of OSA development & sustainment
How Can OSA Initiatives Be More Successful?

FACE is doing a good job at addressing these drivers

Strong S&T Connections to Reduce Risk
Mastery of ALIID Lifecycle Methods
Understand the Strategic Role of Software
Managed Industry/Government Consortia
Lightweight Contracting Models
Effective Data Rights & Licensing Models
Systematic Multi-use Expertise
ALIID Design Expertise
Automated Conformance & Regression Test Suites

See blog.sei.cmu.edu/post.cfm/towards-common-operating-platform-environments-1
Competition Requires Economic & Value-based OSA

Key attributes

- **Crisply defined software & system technical architecture**
- Technical reference frameworks enable competition at multiple system levels
Competition Requires Economic & Value-based OSA

Key attributes

- **Crisply defined software & system technical architecture**
- **Modular innovation potential**
- **Economically-guided criterion for (de)composing technical reference frameworks into modules**
Competition Requires Economic & Value-based OSA

Key attributes

- Crisply defined software & system technical architecture
- Modular innovation potential
- Competitive evolutionary procurement processes
- Enable improvements throughout acquisition program lifecycles
- Not just at infrequent down-selects

True competition requires robust *interoperable open system architectures*
Concluding Remarks

“Big breakthroughs often happen when what is suddenly possible meets what is desperately necessary” – Thomas Friedman
Concluding Remarks

- OSA initiatives for DoD combat systems need a holistic vision & implementation strategy
Concluding Remarks

• OSA initiatives for DoD combat systems need a holistic vision & implementation strategy

• OSAs are achievable & valuable, though not easy to develop & sustain
Concluding Remarks

- OSA initiatives for DoD combat systems need a holistic vision & implementation strategy.

- OSAs are achievable & valuable, though not easy to develop & sustain.

- Alignment in business, technical, & management dimensions is essential for success.

See blog.sei.cmu.edu/archives.cfm/category/common-operating-platform-environments-COPEs
Towards Affordable DoD Combat Systems in the Age of Sequestration

By Douglas C. Schmidt
Principal Researcher

Department of Defense (DoD) program managers and associated acquisition professionals are increasingly called upon to steward the development of complex, software-reliant combat systems. In today’s environment of expanded threats and constrained resources (e.g., sequestration), their focus is on minimizing the cost and schedule of combat-system acquisition, while simultaneously ensuring interoperability and innovation. A promising approach for meeting these challenging goals is Open Systems Architecture (OSA), which combines (1) technical practices designed to reduce the cycle time needed to acquire new systems and insert new technology into legacy systems and (2) business models for creating a more

blog.sei.cmu.edu has more info on Open System Architectures
Ultra-large-scale (ULS) systems are socio-technical ecosystems comprised of software-reliant systems, people, policies, cultures, & economics that have unprecedented scale:

- # of software & hardware elements
- # of connections & interdependencies
- # of computational elements
- # of purposes & perception of purposes
- # of routine processes & “emergent behaviors”
- # of (overlapping) policy domains & enforceable mechanisms
- # of people involved in some way
- Amount of data stored, accessed, & manipulated
- … etc …

www.sei.cmu.edu/uls
The report focuses on ensuring the DoD has the technical capacity & workforce to design, produce, assure, & evolve innovative software-reliant systems in a predictable manner, while effectively managing risk, cost, schedule, & complexity.

Sponsored by Office of the Secretary of Defense (OSD) with assistance from the National Science Foundation (NSF), & Office of Naval Research (ONR),
http://www.nap.edu/openbook.php?record_id=12979&page=R1
The Institute for Software Integrated Systems (ISIS) was established at Vanderbilt in 1998.

Research at ISIS focuses on systems with deeply integrated software that are networked, embedded, and cyber-physical.

Key research areas at ISIS:
- Model-Integrated Computing
- Middleware for distributed real-time & embedded (DRE) systems
- Model-based engineering of cyber-physical systems
- Wireless sensor networks
- Systems security & privacy

[Engineering webpage](https://engineering.vanderbilt.edu/innovations-2013) has more info on ISIS.