A Perspective on Decision-Making Research in System of Systems Context

System of Systems Engineering Collaborators Information Exchange (SoSECIE)

26-April-2016

Navindran Davendralingam
Daniel A. DeLaurentis
School of Aeronautics & Astronautics
and
Center for Integrated Systems in Aerospace
http://www.purdue.edu/research/vpr/idi/cisa/

Purdue University
davendra@purdue.edu
Motivations/observations

- We all make decisions – some good, some bad:
 - Braess Paradox - individual vs. social incentive equilibriums
 - Centralized vs. decentralized – overloaded information – cannot make rational decisions
 - “Mumbai cobras and mismatched incentives”
 - Defense acquisitions – jet fuel trails in the sky
 - My airline experience – the “irrational” traveller
 - Revenue management
SoS – the KEY Questions

- US DoD SE/SoSE guidelines
- Transportation, Healthcare, Defense, Software Engineering etc.
- An international endeavor (beyond U.S. DoD, NSF), e.g. European Commission FP7 Efforts in SoS
- Several Major SoS Research Projects
- IBM 4 trillion dollar challenge to deal with SoS level problems

<table>
<thead>
<tr>
<th>Pain Points</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoS Authority</td>
<td>What are effective collaboration patterns in systems of systems?</td>
</tr>
<tr>
<td>Leadership</td>
<td>What are the roles and characteristics of effective SoS leadership?</td>
</tr>
<tr>
<td>Constituent Systems</td>
<td>What are effective approaches to integrating constituent systems into a SoS?</td>
</tr>
<tr>
<td>Autonomy, Interdependencies & Emergence</td>
<td>How can SE provide methods and tools for addressing the complexities of SoS interdependencies and emergent behaviors?</td>
</tr>
<tr>
<td>Capabilities & Requirements</td>
<td>How can SE address SoS capabilities and requirements?</td>
</tr>
<tr>
<td>Testing, Validation & Learning</td>
<td>How can SE approach the challenges of SoS testing, including incremental validation and continuous learning in SoS?</td>
</tr>
<tr>
<td>SoS Principles</td>
<td>What are the key SoS thinking principles, skills and supporting examples?</td>
</tr>
</tbody>
</table>

Survey identified seven ‘pain points’ raising a set of SoS SE questions

Modeling and simulation

- **Air Transportation**
 - Crossley, Mane – Simultaneous design of aircraft and operations in SoS context
 - DeLaurentis, Kotegawa – Improved predictive modeling of terminal area forecasts due to SoS interaction
 - NASA ACES, FACET - Simulators

- **Defense Acquisition, SE/SoSE**
 - Defense Acquisition Guide (DAG), Wave Model,
 - Garett et al - Interstitials of BMDS as a SoS
 - SERC – Acheson cooperative, non-cooperative dynamics of SoS meta-architecture
 - DARPA –SoS maritime application for networks

Image Sources from main websites of each effort : available on request
Decision Analysis and control

Software /Systems Engineering/Decision Support
- DANSE – technical approaches for SoS Engineering
- COMPASS – MBSE techniques for developing and maintaining SoS
- Various works from: JPL, CMU-SEI, USC, MIT, Purdue

Control Systems as a System of Systems
- Distributed/Decentralized/Consensus Control
- Smart grid systems, UAV/drone application (military, agriculture)
- VoIP, Communication Network Protocols and Routing.

Book Publications:
A Decision Theoretic perspective

SoS stakeholders may be cooperative or non-cooperative decision-makers

Maximization of individual utility affected by:

• **Data to Information**
 - Too much data to determine value of choices
 - Too many options to quantify value of choices
 - Data privacy/segmentation

• **Rules of Autonomic Engagement**
 - Constraints on how to talk to another stakeholder
 - Information flow based on constraints

• **Perceived Fairness**
 - Good allocation for whole is not fair to individual (price of fairness)
 - Changes individual behavior/participation (gaming behavior)

• **Network structure**
 - Structure of information flow across network
 - Game/Incentive based on structure of network for resource flow
Modeling for decision making

Agent Interactions and Theories
- Adaptive Markets Hypothesis (Lo)
- Reconcile modern financial economics with behavioral models to explain market dynamics (e.g.) -
- Rationality/Irrationality
- Loss Aversion
- Overconfidence
- Overreaction
- Cultural Theory
- Risk regulation driven theory – explain how certain stakeholder groups make alliance and shift equilibrium.

Modeling Framework(s)
- Agent Based Model (ABM)
- System Dynamics
- Various Stochastic Processes
Mechanism design & learning preferences

- **Mechanism Design**: involves the design of institutions and how these affect the outcomes of (stakeholder) interactions. Also known as “reverse game theory”. (e.g. – Auctions using Vickery Clarke-Groves Mechanisms)

- **Game Theory**: the study of mathematical models of conflict and cooperation between intelligent rational decision-makers

- **Network Science** – nature of connections between stakeholders/systems

- **Learning Preferences** – statistical/data mining to find stakeholder preferences

 - We often apply these to the product/service not to organization

Prior Research (Mechanism Design)

The Idea: Can we treat policy selection as a ‘game’ and design game accordingly?

Our Work: Early mechanism design framework for policy selection in acquisitions-use of empirical data in policy generation work

Prior Efforts:

• Dagli et.al – Agent simulation of iterations: planning, implementation, analysis phases in wave model, in preparation for sequential tasks for each epoch.

• Sheard survey driven analysis on complexity, cognitive overload, difficulty of system development.

A Bayesian Perspective to McNew Survey

- McNew uses behavior archetypes to structure survey
- 65 program managers surveyed to confirm these ‘behaviors’ on program
- If present, confirm cost, schedule growth, root cause
- Use Bayes to determine

\[P(\text{outcomes} \mid \text{root cause}) \& P(\text{root cause}) \]
Mechanism Design

• Also known as ‘reverse game theory’ – invent the game,. Applied in auctions, communications networks.

• Frequently applied in auction theory (how does auctioneer maximize revenue) though mostly in single item auctions.

• Individual Rationality: Buyers do not achieve negative utility with truthful bids,

• Budget Feasibility: Buyers are constrained by resource budgets in bidding, and,

• Incentive Compatibility: Bidders fare best (optimal utility) when truthfully disclosing information.
A Simple Application to McNew Data

Policy generation scenario

Given:

- Bayesian Analysis of McNew data
- Cost implications
- Potential gain by using policy (x_i)
- Uncertainty in correlated gains for policies (x_i)

Question:
What policies should I effect at various levels of policy robustness, satisfying some mechanism conditions?

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>SG</th>
<th>CG</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>1.0</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- R1: Govt failed to define requirements
- R2: Contractor failed to understand risk
- R3: Requirements changed to accommodate additional users
- R4: Contractor struggled integrating technologies
- R5: Contractor failed to assign sufficient personnel

Behavior
- Cost Growth
- Schedule Growth

Root Cause
- Happy path testing
A Simple Example Application

- Tradespace analysis, policy control
- Objective view of policy effects given current available state

<table>
<thead>
<tr>
<th>Policy</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Policy 3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Policy 4</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Policy 5</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Policy 6</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Policy 7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Policy 8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Conservatism (Γ) 0.1 0.3 0.9

P(Constraint Viol) 0.64 0.61 0.52
Optimal Selection of Organizational Structuring for Complex System Development and Acquisition*

- **Conway’s Law**

 “..product designs tend to reflect the structure of an organization in which they are conceived..” **

- **Organizational Structure**
 - Connections between groups
 - Volume, type, function, form of information
 - Incentives between groups, individuals

- **Complex Product Structure**
 - Physical, Functional boundaries
 - Multidisciplinary Boundaries

Can we reconcile them to better organize a team AND the end product?

* Research current funded under Naval Postgraduate School Acquisitions Research Program Grant N00244-16-1-0005
Some prior research

- **MacCormack et al** – Conway’s law is a notable effect – examined software system layout and showed degree of coupling and propagation costs

- **Honda et al** – comparison of information passing strategies in system-level modeling

- **Ulrich** - how degree of product’s novelty affects 5 areas of managerial importance
 - Product change, variety, component standardization, performance, development management

- **Sinha & de Weck** – explore how the degree of a new product’s novelty affects the structure of an organization.

Concept Application

Multiple Stakeholders

- Stakeholder 1 Utility Model
 - Profit vs. Risk

- Stakeholder 2 Utility Model
 - Profit vs. Risk

- Stakeholder 3 Utility Model
 - Utilities: Profit vs. Risk vs. Personal

“Retail” Rebalance Portfolio

Product A

Product B

Organization Structure

“Product” Structure
Summary and forward thoughts

Current SoS research mostly focus on:

- Implicit value to stakeholder(s)
- Modeling complex interdependencies/dynamics of SoS
- Acknowledges a coupled effect between organization and product structure

For **operational** and **managerial** independence questions, need to address:

- Developments in MPTs to improve the collaborative/competitive decision-making elements across stakeholders in a SoS.
- The SoS level impact of changing preferences and behaviors
- Policy generation through quantitative, decision-theoretic approach.
Contact information:

Dr. Navindran Davendraalingam
Research Scientist
Center for Integrated Systems in Aerospace (CISA)
davendra@purdue.edu

Dr. Daniel DeLaurentis
Director
Center for Integrated Systems in Aerospace (CISA)
ddelauere@purdue.edu
Acknowledgements

This research supported by the Naval Postgraduate School Acquisition Research Program Assistance Agreement No. N00244-16-1-0005 awarded by the Naval Supply Systems Command (NAVSUP) Fleet Logistics Center San Diego (NAVSUP FLC San Diego). It has not been formally reviewed by NPS. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the NPS or NAVSUP FLC San Diego. The NPS and NAVSUP FLC San Diego do not endorse any products or commercial services mentioned in this publication. This material is also based upon work supported, in whole or in part, by the U.S. Department of Defense through the Systems Engineering Research Center (SERC) under Contract HQ0034-13-D-0004. SERC is a federally funded University Affiliated Research Center managed by Stevens Institute of Technology.