Conceptual Data Modeling for the Functional Decomposition of Mission Capabilities

February 27, 2018

Andrew Battigaglia

Andrew.Battigaglia@gtri.gatech.edu
Motivation - Describing Data

• The purpose of a functional decomposition for mission capabilities is to break down complex activities (e.g., noncombatant evacuation operations, landing operations) into more manageable functions.

• While these functions provide a greater understanding for a wider audience, the data elements are often simply labeled using words.

• In some cases, a dictionary is employed to encourage consistent phrasing and identical data elements are reused where appropriate.

• Interpretation left up to a human to discern subtle differences or make real connections between the elements.
Activity Diagrams

Typical representation of the elements of functions after a functional decomposition
Conceptual Data Modeling

• Commonly used to document software engineering requirements through the identification of entities, relationships, and possible attributes of these items.

• Can be applied in systems engineering by connecting data elements (inputs and outputs) of an implementation-agnostic functional decomposition to a set of common entities and relationships to assist in the consistent documentation of these functions.

• Provides a clear way for a functional decomposition to define relationships between data entities and to identify the attributes of those relationships.

• Both data and functional modeling are concerned with capturing and representing familiar and related aspects of the real world.
Goals

- **Consistent Interpretation.** Using a conceptual data model which contains entities, relationships, and attributes that are formally structured removes the question of whether multiple functions are referencing some of the same concepts.

- **Function Reusability.** By employing the principles of conceptual data modeling, functions can be readily identified as requiring greater inspection and probable change if they contain details suggesting a specific implementation.

- **Data Reusability.** When a conceptual data model is created to represent function data elements, the work done can be leveraged with one or more functional decompositions of mission capabilities.
Approach

• A conceptual data modeling approach using the Future Airborne Capability Environment (FACE) Data Architecture was used.

• A specific data architecture was selected in order to ensure consistent terminology, a standard metamodel, and a set of constraints to ensure interoperability between data elements and to allow future expansion for additional mission capabilities.

• These benefits of a formal data architecture also assist in the validation effort to ensure that the final data model contents conform to the rules of the selected approach.

• The FACE Data Architecture is built around four main concepts: observables, entities, associations, and views.
Observables

- Items that can be observed but not further characterized, and is typically obtained through measurements of the physical world
Entities

- Things that are capable of an independent existence that can be uniquely identified

```
<<EntityType>>
GroundVehicle

<<Composition>>
+ Acceleration: Acceleration
+ Position: Position
+ UniqueIdentifier: UniqueIdentifier
+ Velocity: Velocity

_tags_
_faceUUID = 1c745eb6-2d3d-49b6-bed9-e779ed8a799c
description = A mobile machine that transports people or cargo by applying steering and drive forces against the ground.
```

```
<<EntityType>>
Engine

<<Composition>>
+ Mass: Mass
+ Position: Position
+ Temperature: Temperature
+ UniqueIdentifier: UniqueIdentifier

_tags_
_faceUUID = 68ed541a-ecb3-40bf-9fc2-b2a8584e16e3b
description = A machine with moving parts that converts power into motion.
```
Associations

- Used to model the relationships between Entities
Views

• With the entity-relationship model in place, a mechanism is required to adequately select the relevant parts that are required by the different data elements of a functional decomposition
• Views work by projecting an entity, association, or observable in the respective concept’s context, typically accomplished through a projection path
• A functional decomposition is able to directly reference each view using the respective UUID and view name
• Using dot notation for the projection path, only the relevant elements necessary for this view are extracted from the model and become readily available to represent the data consumed or produced by a function of a mission capability
Illustrating the Approach

- Creating or leveraging a data model assists in building better functions by cross-checking the data model with function data elements and then refining the two concurrently.
- “Provide Ground Transportation” is defined as the “ground support transportation function that includes moving and transferring units, personnel, equipment and supplies by vehicle to support the operations.”
- Scope of this mission capability includes software functionality for determining the ground vehicle’s situation, deciding how to navigate the vehicle from where it is to where it needs to be, and controlling the motion of the vehicle.
- Other functionality, such as loading the vehicles and performing maintenance operations, was excluded.
Top Level Functions

- Provide Ground Transportation
 - Provide Situational Awareness
 - Navigate
 - Control Motion
Original Control Motion Activity

- : Left Steering Command
- : Right Steering Command
- : Braking Command
- : Acceleration Command
- : Forward/Reverse Command
- : Drive Mode Command

- : Steer Left
- : Steer Right
- : Provide Braking
- : Provide Acceleration
- : Select Forward/Reverse
- : Select Drive Mode

- : Ground Vehicle Direction Change
- : Ground Vehicle Speed Change
- : Gear Selection Change
- : Drivetrain Change
Constructing the Data Model
Control Motion Activity Post-Data Model
Provide Situational Awareness Activity
Expanding the Data Model
Next Steps

• Next phase is to begin using existing functions to create new system implementations
• To continue using a conceptual data model for specific applications, it will have to be expanded to the logical and physical schemas
• Constructing a data model that contains conceptual, logical, and physical levels entails describing the attributes, or observables, in terms of units, frames of reference, and physical datatypes
• A benefit of taking this next step is that it will become apparent if an entity, association, or observable is missing from the conceptual data model because a specific implementation might require a physical datatype that does not appropriately link to the conceptual level
Questions?